Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon

Manual Part No.
070-2058-01

97077

Tektronix

COMMITTED TO EXCELLENCE

PLOT 50
INTRODUCTION TO
PROGRAMMING
IN BASIC

First Printing DEC 1975
This Printing SEP 1978

Copyright © 1975, 1978 Tektronix, Inc.
All Rights Reserved.

All software products including this document, all associated
tape cartridges and the programs they contain are the sole
property of Tektronix, Inc., and may not be used outside the
buyer's organization. The software products may not be
copied or reproduced in any form without the express written
permission of Tektronix, Inc. All copies and reproductions
shall be the property of Tektronix and must bear this copyright
notice and ownership statement in its entirety.

PRODUCT PLOT 50 Introduction to Programming in Basic

»

This manual supports the following versions of this product: Version 1 and up

MANUAL REVISION STATUS

REV. DATE DESCRIPTION
B @ 12/75 Original Issue
REV. A 9/78 Revised page format.

PLOT 50 PROGRAMMING

REV A, SEP 1978

WE KNOW YOU'RE ANXIOUS TO LEARN ALL ABOUT THE GRAPHIC SYSTEM, BUT...

you'll miss valuable information if you don't start at the beginning!

No matter what your objectives are, you should begin by reading the
introduction in the Graphic System Operator's Manual. It presents an
overview of the complete Graphic System documentation package, and
it will help you select the study material you need to use the Graphic
System effectively.

REV A, SEP 1978 PLOT 50 PROGRAMMING

Section 1

Section 2

PLOT 50 PROGRAMMING

CONTENTS

PREFACE Page

INTRODUCTION

The Needforalanguageciiiiinnnennnnnn. 1-1
BASICasalanguage...........cooviiiiiiiiiiiiinnnnn.. 1-1

Language Concepts ... 1-2
Scientific/Standard Notation.............. S, 1-2
Variableso 1-3
Ooperators ... 1-6
Assignments. 1-6
Functions. ... i 1-6
Numeric Expressions. 1-7
Statements 1-8

ESSENTIALS OF BASIC

Operators........... E e e et e e ta e e et e e eenn 2-1
Arithmetic Operators. ... 2-1
Relational Operatorsccooiiiiin ... 2-3
Logical Operators........ ...t i, 2-5
Operator Hierarchy. o i, 2-6

Assignment Statements................. 2-7
Assigning Numeric Values to Numeric Variables 2-7

INPUL. . 2-9
The READ and DATA Statements. 2-9
The INPUT Statement i, 2-12

OUtpUL 2-13
The PRINT Statement 2-13
PrintFields ... i 2-14
Suppressing the Automatic Tab........................... 2-15
Outputting StringConstants 2-15

107 o | { o 2-17
Terminating Program Execution........................... 2-17
ASample Programc.c.uiiiiinin i, 2-17
Unconditional Transfers.......... ..., 2-20
Conditional Transfers and Branching...................... 2-22
FOR/NEXT LOOPS ..ottt ittt 2-26
Nesting FOR/NEXT LOOPS . ..o i ie e 2-32
The Computed GOTO Statement.......................... 2-34

REV A, SEP 1978

Section 2 (cont)

Section 3

Section 4

Documentation...............
Documenting a Program. ...
User-Defined Functions.

Summary ...,
Example Programs

DIRECTIVES

Prologue....................

Program Control.............
The RUN Statement.......
The LIST Statement.......

The RENUMBER Statement
Memory Monitoring..........
Memory Bytes
The SPACE Function......

Programson Tape...........
The FIND Statement.......

Summary ...,
Example Program............

ARRAYS

Introduction.................

Allocating Memory...........
The DIM Statement........

REV A, SEP 1978

PLOT 50 PROGRAMMING

Section 4 (cont) _ Page

Subscripting 4-5
One Dimensional Arrays. ..., 4-5
Two Dimensional Arrays. ..., 4-9
Brief Examples of Array Operations 4-11

Operations. ... 4-14
Array Operations. i 4-14
Inputting Arrays. ... 4-14
Reading Arrays ...t 4-15
Printing Arrays. ... 4-15
Array Assignments............ .. 4-16
Array Arithmeticooovieii e 4-16
AddiNG AITays ... 4-17
Subtracting Arrays. ... 4-17
Multiplying Arrays.o 4-17
Dividing Arraysot 4-18
Summingan Array 4-18

Matrix Functions 4-19
The DET Function........ o i 4-19
TheIDNRoutine i 4-24

Properties of Identity Matrices.......................... 4-27
Multiplying by an Identity Matrix 4-27
When an |dentity Matrix is the
Result of Matrix Multiplication........................ 4-27

The INV Function 4-29

The Square Part e 4-29

TheExtraColumns ...t 4-30

Systems of Equations with no Solution.................. 4-35

Supplementary Information................, 4-36

Mathematical Invertibility is Numerical Invertibility. 4-36

Truncation Error. 4-37

The ConditionofaMatrix oot 4-37
Evaluating the Result of the INV Function............. 4-38
Evaluating the Result of the DET Function 4-39

The MPY Function........ 4-41
AMPY Bvs BMPY A. ... e 4-46
TheZeroMatrixX....... ..o it 4-46
The Difference Between * and the MPY Function........... 4-47
Raising MatricestoaPower, 4-47
How Matrix Multiplication Relates
to Systems of Linear Equations 4-48

The TRNFunction........ .. . i i 4-50

QUMM AIY .ot e e e 4-53

Example Programs ... 4-54

PLOT 50 PROGRAMMING REV A, SEP 1978

Vi

Section 5

Section 6

CHARACTER STRINGS Page
Background. 5-1
String Assignment Statements L. 5-1
Dimensioning String Variables............................ 5-2
String Input/Outputo 5-3
String CompariSONSvut it 5-5
Concatenation........ e e 5-6
Functions. ... 5-7
Substrings. ... 5-7
The LENFunction............ ... oo 5-7
The SEG Function........... i, 5-8
The POS Function....... ... 5-9
The REP Function........... 5-11
COoNVEISIONS ..o 5-14
The VAL Function........ 5-14
The STRFunction........... 5-14
The ASC Function........... ... i, 5-15
The CHR Function 5-15
Summary of the Character Conversion Functions 5-16
SUMMAIY .. e 5-17
Example Programs i 5-18
SUBROUTINES
Writing Subroutines 6-1
Conventional Subroutines, 6-1
Computed GOSUBo 6-5
User Definable Keys........... .ot 6-9
General ... 6-9
An lllustrative Exercise............. ... i e 6-9
SUMMaAIY .ottt e e e e 6-15
Example Programs i 6-16

REV A, SEP 1978 PLOT 50 PROGRAMMING

Section 7

PLOT 50 PROGRAMMING

EXTENDED 1/0 Page

Output Formatting............. .. . s 7-1
Background Information............. 7-1
The Character String Field Operator-A 7-2
Repeat Field Operator- ()ccoviiiiinninnnnn... 7-4
Digit FieldOperator-D.............ccoiiiii i 7-4
Scientific Notation Field Operator-E...................... 7-10
Space FieldOperator- X, 7-13
Literal Field Operator-“. 7-14
Page FieldOperator-P.............o i i i, 7-16
Line Feed FieldOperator-L........... ittt 7-16
Carriage Return FieldOperator - /......................... 7-16
TabFieldOperator-T..... ... i 7-17
Suppress FieldOperator-S.............................. 7-18
No-Op Field Operator -, ...t 7-19
Field Operator Summary............... ..., 7-19

Data Files. ... 7-20
Background Information............ 7-20
Addressing Peripherals. 7-21
ASCIIFiles ... o e 7-23
Binary Files. i 7-30
Determinationof Data Type............ciiiiiiinnn... 7-34
File Security 7-36

Internal Interrupts 7-38
General 7-38
SIZECondition. i 7-39
EOF Condition......... ... i 7-41
FULLCondition............. . it 7-43

SUMMAIY i e e e 7-45

Example Programs i 7-46

REV A, SEP 1978

vii

Section 8 GRAPHICS

Page
Background. e 8-1
MOVE and DRAW. i i 8-2
The MOVE and DRAW Statements 8-2
MapPiNg ... 8-4
The Conceptof Mapping ..., 8-4
EstablishingaWindow o .. 8-4
WINDOW Statement............... ..o, 8-5
Graphic Display Units 8-8
Establishinga Viewport 8-9
WINDOW and VIEWPORT Combined 8-12
The SCALE Statement.............. T, 8-15
Graphic Output. 8-20
The RMOVE and RDRAW Statement....................... 8-20
The ROTATE Statementoovuveeeneeeenn... 8-21
Using Two ArraystoDrawa Graph........................ 8-28
Drawing Axis Lines. 8-28
The AXIS Statement Without Parameters.................. 8-29
The AXIS Statement With Two Parameters................. 8-33
The AXIS Statement With Four Parameters 8-35
AlphanumericOutput............... 8-39
SUMMANY . ot 8-47
Example Programs i 8-48
Appendix A REFERENCE MATERIAL
Hierarchy of Operations ..., A-1
GlOSSaANY . .t A-2
Control Characters ... A-8
Flowchart Symbols A-9
ASClHICode Chart.......... .., A-10
ErrorMessages A-11
Formatting Worksheet i iiiiiiiinn.. A-20
INDEX
viii REV A, SEP 1978 PLOT 50 PROGRAMMING

PREFACE

Introduction to Programming in BASIC is for the non-programmer. Presented in a
step-by-step informal style, the text helps you understand both general programming
concepts and specific programming instructions for the Graphic System. With this
manual’s help, you'll find that programming is not a sinister, mysterious art; but is
instead, groups of logical and easy-to-understand procedures. In no time at all, you'll
be writing Graphic System programs specifically designed to meet your requirements.

You'll have to use a language the system understands when you write programs. BASIC
is the language selected for the Graphic System because of its versatility, simplicity,
and general acceptance. Tektronix has extended the BASIC language to make it a rich
and powerful communications link between you and the Graphic System.

The Introduction to Programming in BASIC and the Graphic System Reference manuals
contain some of the same subject material. This manual teaches programming in an
operational format and restricts its instruction to programming as it applies to the

Graphic System as a stand-alone system. This is a simplified text that provides a funda-
mental approach to programming; therefore, all the keywords in the Graphic System
BASIC language are not presented here. The Graphic System Reference Manual, on

the other hand, is written for the experienced programmer, and it presents a complete

and in-depth description of programming and BASIC in an alphabetical format. The

text applies to the Graphic System as a stand-alone system or when the system is enhanced
by peripheral equipment.

It is expected that the non-programmer will use this text to learn programming, then
depend on the Graphic System Reference Manual as a reference.

PLOT 50 PROGRAMMING REV A, SEP 1978

Section 1

INTRODUCTION

THE NEED FOR A LANGUAGE

Suppose you have a hundred or so numbers, and you want to average them. You know that
you will have to obtain their sum and then divide that by the ‘“‘number of numbers’’ to ob-
tain the average. The Graphic System can be instructed to do the task. You must provide it
with the numbers that are to be worked with (data), and then tell the machine in detail what
to do. In order to communicate these instructions to the machine, there must exist a lan-
guage that both you and it can understand.

BASIC is one such language. There are many programming languages — some of them widely
known, others relatively unknown. BASIC is a language that is in wide use today, primarily
because it is relatively easy to learn. Being easy to learn, however, is no implication that the
language is restricted to trivial applications.

BASIC as a Language

BASIC is a “high level” language — that is, it utilizes English-like instructions rather than
binary code (1’s and 0’s) or obscure sounding abbreviations. As a result, it is a relatively
straightforward process to give instructions to the machine. If you want it to read some-
thing from a list of data, the keyword is READ; if you want to obtain the sine of some
angle, the keyword is SIN, etc.

The word “BASIC" is an acronym derived from Beginners All-purpose Symbolic Instruction
Code. The language was developed in the 1960’s at Dartmouth College; the Graphic System
recognizes an extended version of the original BASIC.

PLOT 50 PROGRAMMING REV A, SEP 1978

1-1

INTRODUCTION
LANGUAGE CONCEPTS

1-2

LANGUAGE CONCEPTS

A programming language, like any language, has rules governing its use. Languages used for
“people-to-people”” communication are full of ambiguities and often make many assump-
tions. A programming language, however, requires that things be done in a precise fashion,
and you cannot safely assume anything.

The English language is composed of a number of different parts. We construct a paragraph
utilizing such grammatical devices as verbs, nouns, adjectives, adverbs, etc., and progress in-
to using relatively advanced things like coordinating conjunctions, parallel construction, and

so on. Programming languages also employ a kind of grammar. The particular language illus-

trated in this document uses (in place of verbs and nouns and similar things) ““Variables”,
“Operators”’, “‘Statements”’, “’Functions” and numerous other concepts which you should
be familiar with before attempting to learn the language. Also, you need to be familiar with
the ways that numbers can be represented. These topics are introduced in the following
paragraphs.

Scientific/Standard Notation

Numbers are output from the Graphic System in two possible forms: standard notation and
scientific notation. Numbers in standard notation are ““human’’ numbers like 1.3, 950, and
0.1. Numbers in scientific notation are ““machine’”’ numbers like 1.72E+11 and 3.216E—5,
where ““E—b"’, for instance, means ‘‘times 10 *". In the Graphic System, the form that a
number assumes is largely determined by the magnitude of the number. Numbers within a
prescribed range will be output in standard notation; numbers outside the range will be out-
put in scientific notation.

In order to visualize the range of values that numbers can assume, it may be useful to think
of an arithmetic data item (number) as being a box which can contain a specific number of
digits. Let’s assume this box can contain eight digits. The range of values a number can take
then depends on the location of the decimal point:

NUMBER (8 digits) RANGE
(1) (2) (3) (4) (5) (6) (7) (8)

9 919191919 91{0°9 0 to 99999999 in steps of 1

fixed decimal point

91919(919]1949]°9 0 to 999999.99 in steps of 0.01

{

7

fixed decimal point

9 919199191919 0 t0 .99999999 in steps of .00000001

fixed decimal point

REV A, SEP 1978 PLOT 50 PROGRAMMING

INTRODUCTION
LANGUAGE CONCEPTS

Notice, in the numbers used here, that the location of the decimal point not only affects
the numeric range. It also affects the resolution, i.e., the smallest detectable difference
between values. In standard notation, the location of the decimal point is fixed.

The smallest absolute value (excluding zero) that an eight-digit number can assume is
-.00000001, and the largest is 99999999. If the decimal point is fixed, however, this range
cannot be attained (as the preceding illustration shows). For small numbers, the decimal
must be towards the left; for large numbers, the decimal must be towards the right. The
solution is to let the decimal ““float.”” This permits the decimal point to be moved auto-
matically by the machine, resulting in the widest possible range of values. In scientific
notation, the location of the decimal point is not fixed. The points at which the Graphic
System will normally perform the standard notation/scientific notation conversion is
diagrammed as follows:

FIGURE 1-1
SCIENTIFIC
l«—— —10,000,000 to —.0011 —.] l«—— .001 to 10,000,000 — .|
SCIENTIFIC STANDARD STANDARD SCIENTIFIC
— - — - — - —
H'H-"‘H'0++PHH+FH+H+P(\L:H?HH{11HHHH:::: :H:::i{l{il: :HHH?H?HH:H{W-‘#“'H
L—9,999,999 —-.0011 _} f t_ooﬂ 9,999,999 J
L —10,000,000 -1.0E-3 - 0 —.001 10,000,000 —
- -9.0E-4 9.0E-4
1:0000001E+7 (—.0009) (.0009) 1.0000001E+7
| __—1E+307 NUMERIC RANGE v 1E+307
OF THE GRAPHIC
SYSTEM

You will probably be working with standard notation most of the time.

Variables

The term “variable” is used in essentially the same context as in algebra. That is, in an
equation like “X =Y +Z"”, X, Y, and Z are variables. One variable (in this example) is named
X", another is named “Y"’, etc. In BASIC, there are four kinds of variables: numeric vari-
ables, string variables, array variables, and subscripted array variables. A numeric variable is
like “X" or ““Y"" above, and will be equal to some numeric value. The format for naming
numeric varaibles is indicated as follows:

ONE LETTER ONE NUMERAL
“A" through 2" 0-9

PLOT 50 PROGRAMMING REV A, SEP 1978 1-3

INTRODUCTION
LANGUAGE CONCEPTS

The braces indicate that you must use one letter of the alphabet; the square brackets indi-
cate that the use of a numeral is optional. (This notation will be used throughout this
manual. Again, braces mean that you must select one item from the list of items included
within the braces; brackets mean that the enclosed items are optional.) The following are
examples of valid numeric variable names:

A
X
X4
Y7

The following are examples of numeric variable names which are not valid:
AB
3P
4

An array variable looks like a numeric variable. However, array variables can be followed by
one or two subscripts enclosed in parentheses.

Examples:
A(1)
Y3 (2)
Z (4,3)
X(N)

Basically, array variables allow you to refer to some specific value in an ordered group

of values. For example, suppose that you have gathered five temperature readings and want
to perform some calculations using these readings. The five values representing the tempera-
tures might be stored in the machine in the form:

A(1) A(2) A(3) A(4) A(5)

65. 72. 75. 70: 67.

The array variable which refers to the entire collection is (in this case) A, and by subscripting
the variable you can refer to specific elements of the collection. Thus, A(2) =72, A(b) =67,
etc.

14 REV A, SEP 1978 PLOT 50 PROGRAMMING

INTRODUCTION
LANGUAGE CONCEPTS

A string variable departs from the familiarities of algebraic convention. String variables are
so designated because they imply equivalence to a string of characters (letters). The format
for naming a string variable is as follows:

ONE LETTER
“A" through “Z" 3

Examples of invalid string variable names:
AB$
Y3$
4P$
X

With numeric variables, you can imagine a condition where, say, X = 4. With string variables,
however, an example would be more like X$ = “ABCD". You will note that string variables
always end with $; this is so the machine can distinguish between numeric and string vari-
ables. The uses of string variables will be elaborated upon later; generally, they exist to per-
mit you to perform operations with text.

To summarize all this talk about variables, the important thing to remember is that there
are four different types of variables that you will be concerned with. These are:

numeric variables like A and B1,

array variables like A and B,

subscripted array variables like A(1) and A(b),
string variables like A$ and X$.

Another thing to realize about variables is that each variable used within a given program
requires some amount of memory, and will occupy some location in memory.

PLOT 50 PROGRAMMING REV A, SEP 1978 15

INTRODUCTION
LANGUAGE CONCEPTS

Operators

There are three categories of operators: arithmetic, relational, and logical. All involve a
symbol denoting that some operation is to be performed. Four arithmetic operators are
+, —, / (for divide), and * (for multiply). A fifth arithmetic operator is 1, signifying ex-
ponentiation. The relational operators are more extensive, involving things like < (less
than), > (greater than), <= (less than or equal), and so on. The logical operators are ex-
emplified by AND, OR, and NOT. The actual use of the various operators is detailed in
the next section (“ESSENTIALS OF BASIC"); the point here is that operators, like vari-
ables, are one of the components of the language. So far, the language is composed of two
things: variables and operators.

Assignments

The familiar equality symbol (=) is used in programming in a manner slightly different than
usual. If you say X =4 in a programming language, it is interpreted by the machine as saying
"“Assign the value of 4 to the numeric variable X"'. The machine goes to the location in
memory that houses the variable X and places a 4 in that location. Similarly, if you say

Y =2 * X this is read by the machine as “’Go to the location in memory that contains X,
multiply the current contents of that location by two, and assign the result to the location
that contains Y. Further, X = X + 4 means “’Go to the memory location containing X,

add 4 to the current value of X, and place the result in the memory location X.”* The equals
sign is sometimes termed the “‘assignment operator.*

Functions

A function provides a means for invoking a built-in set of calculations and supplying the
result. For example, if you want to set a numeric variable like X equal to the square root of
20, one way to accomplish this is by saying X = SQR (20). In this case, the square root
function has been employed; the function itself is written using a name, SQR, and a number
enclosed in parenthesis. The number is called the parameter of the function, and the func-
tion is said to return a value. (The parentheses are optional.) Functions, like everything

else in programming; have a specific format:

NAME (PARAMETER)

The mathematical functions which are built into this version of BASIC are listed below.
(For simplicity, the parameter in each case is X.) ' ‘

1-6 REV A, SEP 1978 PLOT 50 PROGRAMMING

INTRODUCTION
LANGUAGE CONCEPTS

Function What It Returns
ABS (X) The absolute value of X.
EXP (X) eX
INT (X) Returns the ““largest integer < X'’;i.e., INT (=3.7) = —4

INT (3.7) =3
LOG (X) Logarithm of X to base e.
LGT (X) Logarithm of X to base 10.
RND (X) Random number between 0 and 1. If X = 0, the RND

function will return the same number each time.
SQR (X) Square root of X. (X must be positive.)
SIG (X) Sign of X. Returns:

1ifX>0
0ifX=0
—-1if X <0

SIN (X) Sine of X
COS (X) Cosine of X
TAN (X) Tangent of X
ATN (X) Arc tangent of X. (ATN may also be written as ATAN)
ASN (X) Arc sine of X
ACS (X) Arc cosine of X
Pl The value of 7. Note that no argument is required.

Some additional functions are also included in the language which pertain to string variables
and matrices (arrays); they are discussed later in the appropriate sections.

Numeric Expressions

A numeric expression in BASIC is a collection of variables, functions, constants, etc., con-
nected by arithmetic, logical, and relational operators. Such expressions are intended to
cause some desired computation to occur, and can be reduced to a single numeric value. A
numeric expression is exemplified as follows:

PLOT 50 PROGRAMMING

REV A, SEP 1978 1-7

INTRODUCTION
LANGUAGE CONCEPTS

X=8QR(Y)+2Z *4
m— c— ’

This is a numeric expression, formed with a function (SQR), the numeric variables Y and
Z, the operators + and *, and the constant 4.

Statements

Up to this point, the following components of the language have been introduced:
Variables (numeric, array, subscripted array, and string)
Operators (arithmetic, relational, and logical)
Assignments
Functions

Expressions
From these components, a simple statement can be constructed:

1150 A = B*C

t_ Nuimeric expression

Assignment operator (

Numeric variable

Line number (this number

was chosen arbitrarily).

A statement in BASIC, when used as part of a program, is always preceded with a line
number. (This is sometimes termed a statement number.) Line numbers are needed so that
the machine, after executing the instructions in a given line, can locate the nextline in a
program. The way that you signify the end of a line is by pressing the RETURN key.

A statement, then, is a valid set of instructions preceded by a line number, and ending with

a “RETURN" character. A program, rather loosely defined, is a set of statements. The part
of the Graphic System that processes the statements into binary code is called the BASIC
interpreter. The statements in a program are not executed until the program is run. This is

in contrast to what could be regarded as the ““calculation mode'’ of the Graphic System. That
is, if you just want to perform a simple calculation like obtaining the square root of 20, you
do not need to create a program complete with line numbers. You just type in the expression

SQR (20)

and press RETURN. The result will appear immediately.

1-8 REV A, SEP 1978 PLOT 50 PROGRAMMING

Section 2

ESSENTIALS OF BASIC

OPERATORS

Arithmetic Operators

Operators, as mentioned earlier, fall into three categories: arithmetic, logical, and relational.
There are five arithmetic operators, tabulated as follows:

Operator Operation Relative Hierarchy
t Exponentiation 1
* Multiplication 2
/ Division 2
+ Addition 3
- Subtraction 3

In an arithmetic expression like A * B, the letters /A’ and ‘‘B" are called operands. Since
two operands are needed for the expression to make sense, the operator (*) is called a
dyadic operator. A monadic operator, on the other hand, involves only one operand and is
characterized by —B or +Y.

The column labeled ““Relative Hierarchy” in the table above refers to the priority, or pre-
cedence, of the dyadic arithmetic operators. Thus, when an arithmetic expression is evalu-
ated, exponentiation is performed first, then multiplication and division, then addition and
subtraction. Equal priority operators are evaluated left-to-right. In writing arithmetic ex-
pressions, you have to remain aware of the hierarchy of the operators you are using. Also,
you have to exercise care in translating algebraic expressions into BASIC. For example:

Algebraic BASIC
4B — 3C 4*B—-3*C
X2 +3v4 X12+3*Y 14
6X —1.2Y 6*X—-12*Y/zZ
Z

PLOT 50 PROGRAMMING REV A, SEP 1978 2-1

ESSENTIALS OF BASIC
OPERATORS

Note that arithmetic expressions in BASIC are represented by a single line of numbers and
symbols. This can present some difficulties in translating an expression like the following:

4X+7
2X -3

A first attempt to convert this expression into an arithmetic expression in BASIC might

yield . ..

4*X+7/2*X-3

but this comes out to be interpreted as . . .

ax+ X 3
2

The problem can be resolved through the use of parentheses. For example:

(4* X+7)/(2*X=3)

The use of parentheses, once introduced, can be regarded as the same as in ordinary

algebraic notation.

Algebraic BASIC
Y-3 (Y —3)/(4 * Q) (‘
4Q
P—14
_ *R *
SR + 3P (P—14)/(5 *R)+ 3 *P
(56X — 3Y)? B*X=3*Y)12/(2*X)
2X

\/A2+B2

SQR(A1t2+B12)

Parentheses can be used to force a different execution order in an arithmetic expression
when it becomes necessary. For example, in the expression . . .

you might be tempted to write. . .

but this is equivalent to. . .

2-2

2xy*1

2*XtY+1

2XY + 1

REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
OPERATORS

The correct approach is to utilize parentheses:

2* Xt (Y+1)

A frequent error encountered in writing arithmetic expressions is that the number of left
parentheses does not equal the number of right parentheses, as in . . .

((A+B)/(A-B) 12
which should be. . .
((A+B)/(A—-B)) t+2

Relational Operators

The BASIC language relational operators are listed below:

Operator Meaning
< Less than.
> Greater than.

= Less than or equal to.
= Greater than or equal to.
<> Not equal to.

= Equal to.

These relational operators are all dyadic operators and result in either a ““true’”’ or a “false’’
condition. A “true” condition is represented by a 1; a ““false’”’ condition is represented by
a Q. For example, suppose that you assign numeric values to numeric variables by typing
the following:

PLOT 50 PROGRAMMING REV A, SEP 1978 2-3

ESSENTIALS OF BASIC
OPERATORS

If you now enter the following comparison (relational) expressions, the Graphic System
immediately returns the indicated results:

Comparison Result Meaning
A<B 1 True
A>B 0 False
A<=B 1 True
A>=8B 0 False
A<>B 1 True
A=B 0 False

For example, the statement 100 N = A < B assigns the value of 1 to the variable N because
1 is the result of the comparison “A <B",

You have probably noticed that the ““equals” sign at this point is capable of playing two
roles: that of being an assignment operator, and that of being a relational operator.

There are two additional relational operators that differ from the relational operators men-
tioned above in that they do not return a ““1’ or “0"'. These are the MIN (for minimum)
and MAX (for maximum) operators, as follows:

MIN
numeric expression numeric expression
MAX

To illustrate, if X =10and Y = 10.7, the statement. . .
199 A=% MAX Y

assigns the value of 10.7 to the variable A. Conversely, the statement

118 B=X MIN ¥

assigns 10 to the variable B. The MIN/MAX operators allow you to select the highest or lowest
values from the left and right numeric expression once the numeric expressions are evaluated
and reduced to a numeric constant. Note that these two operators, while returning the

highest or lowest values, do not provide any indication of which numeric expression it was
that evaluated to this value.

2-4 REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
OPERATORS

Logical Operators

Logical operators are similar to relational operators (excluding MIN/MAX) in that they yield
1 and O (true and false) results. Actually, the digits 1 and O are treated more as indicators of
a condition or state than as a number. The 1 and 0 alternative states could be designated by
any pair of opposite terms (on/off, yes/no, true/false, etc.). There are three logical operators:
AND, OR, and NOT. To illustrate, let's set the numeric variables X and Y as follows:

X=1
Y =2

It is clear that X <Y and, conversely, Y > X. If you enter the logical expression

X<YANDY >X

and press RETURN, it should come as no surprise that the Graphic System returns a 1, indi-
cating that the expression is true. The relationship to the left of the AND operator is true,
the relationship to the right of the AND operator is true, and therefore the entire expression
is true. With the AND operator, if both the relationship to the left and the relationship to
right are true, then the expression is true. If either relationship is false, the expression is
false. This characteristic of the AND operator is summarized in a ““truth table’’ below:

Left Right “AND"

Relationship Relationship Expression
TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

Again, AND expressions are true only when both components of the expression are true.

The OR operator is described by the following truth table:

Left Right “OR"

Relationship Relationship Expression
TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

PLOT 50 PROGRAMMING REV A, SEP 1978 2-5

ESSENTIALS OF BASIC
OPERATORS

As you can see, if either the left or right relationship in an OR expression is true, then the
OR expression is true. This can be verified by entering the following tests (still using X = 1

and Y =2):
X<Y OR Y > X (true)
X<Y OR X>Y (true)
X>Y OR X<>Y (true)
X>Y OR X>=Y (false)

The NOT operator differs from AND and OR in that it is a monadic operator. Its purpose is
to logically negate its associated operand. The expression

NOT (1)
returns a 0; conversely, the expression

NOT (0)

returns a 1. In logical operations, any number having an absolute value of less than 0.5 is
regarded as a logical 0. Any number having an absolute value of greater than 0.5 is regarded
as being a logical 1.

Operator Hierarchy

The following constitutes a summary of the hierarchy of the various bperators that have been
presented so far:

Precedence Operator ' Elaboration

1 (Left parenthesis
2 SIN, COS, TAN, etc. Functions
3 Monadic + and — Used for changing sign
4 t Exponentiation
5 *and/ Multiplication and division
6 Dyadic + and — Addition and subtraction
7 MIN and MAX Comparative operators
8 <,>,=, etc. Relational operators
9 AND, OR, and NOT Logical operators

10) Right parenthesis

A complete list of the hierarchy used in math operations is found in the Appendix.

Notice that the left parenthesis commands the highest priority of all operations; thus, the
hierarchy can be altered through the use of parentheses.

2-6 REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
ASSIGNMENT STATEMENTS

ASSIGNMENT STATEMENTS

Assigning Numeric Values to Numeric Variables

An assignment statement is used to set a variable equal to some value. This is accomplished
through the use of the keyword LET and the “‘equals’ symbol (the assignment operator).
The syntax form is

[Line number] [LET] numeric variable = numeric expression

where “numeric expression’’ can be an arithmetic expression, a constant, or another
variable, This is the syntax form for a “simple’” LET statement, not including, for the
moment, string and array variables. Note that the keyword LET is optional, making the
following two statements equivalent:

109 LET A=S

100 A=5

The reason that LET is optional is that many versions of BASIC require it in assignment
statements; this way, people accustomed to using LET can continue to do so.

An assignment statement is interpreted by the Graphic System as meaning the following:

First, evaluate whatever is to the right of the equals sign.

Then, assign that value to the memory location of the variable on the left side of the
equals sign.

If the variable already contains a value from a previous operation, the old value is destroyed
and replaced by the new one.

Consider the following statements:

100 LET A=10
110 LET B=S
120 LET C=A+B

After the execution of these three statements, the three variables mentioned (A, B, and C)
contain values as tabulated below:

VARIABLE | A | B | C
CONTENTS || 10 | 5

PLOT 50 PROGRAMMING REV A, SEP 1978 2-7

ESSENTIALS OF BASIC
ASSIGNMENT STATEMENTS

2-8

When statement 120 (above) is executed, the current value of A (which is 10) is summed
with the current value of B (which is b}, and the result becomes the current value of C.
The assigned value of variables A and B remain unchanged.

A slightly different case is illustrated by the following:

100 LET A=3
110 LET B=i@
120 LET A=A+B

Line 120 causes the destruction of the old value of A, replacing it with the new value which
results from the summation of A and B.

REV A, SEP 1978 PLOT 50 PROGRAMMING

(

ESSENTIALS OF BASIC
INPUT

INPUT

The READ and DATA Statements

Typically, you approach the Graphic System with some kind of data that requires manipu-
lation. The objective might be to find the mean and standard deviation, or to plot the data
as a graph, or to re-arrange it into a different order. In order to do any of these things, it is
necessary to get the data into memory, and store it under a variable name so it can be acces-
sed. This is made possible through two keywords, READ and DATA. READ has the
following syntax form:

[Line number] READ numeric variable [, numeric variable] . . .

The "numeric variable'' corresponds to the names of the variables to which the data is assigned.
Later on, the READ statement will be expanded to perform extended operations; but for
now this version is sufficient.

The READ statement alone is not enough to get data into memory — the keyword tells the
system to “‘read”” something, but it needs a place from which to read. For this reason, there
is a DATA statement which identifies the data to be read. The syntax form is:

Line number DATA numeric constant [, numeric constant] . ..

Consider the following sequence of statements:

100 READ A
110 READ B
120 READ C

200 DATA 3
210 DATA 6
220 DATA 9

PLOT 50 PROGRAMMING REV A, SEP 1978 29

ESSENTIALS OF BASIC

INPUT

2-10

When the BASIC interpreter encounters statement 100 during program execution, (a
READ statement), it immediately searches for a DATA statement. When the first DATA
statement is located, the data associated with it (3, in this case) is assigned to the variable
specified in the corresponding READ statement. When the next READ statement is en-
countered, the BASIC interpreter looks for the next DATA statement and assigns that data
to the appropriate variable. So, continuing with the above example, after line 120 is exe-
cuted, the variables A, B, and C contain 3, 6, and 9, respectively.

The above example can be re-written from six statements (three READs and three DATAs)
to two:
100 READ A, B, C

200 DATA3,6,9

The above sequence works in the same fashion as the six line version mentioned previously.
That is, the first data item is assigned to the first variable in the READ statement, and the
nth data item is assigned to the nth variable specified by a READ.

Notice that the variables in the READ statement and the data items in the DATA statement
are separated by commas. The commas are used as delimiters, or separators, providing the
BASIC interpreter with a way to detect the end (or limit) of a particular variable name or
piece of data. A DATA statement by itself, with no corresponding READ, has no effect.
The DATA statement may be placed anywhere in the program. |t need not immediately pre-
cede the associated READ statement.

A DATA statement, during program execution, has associated with it a ‘’pointer’’ that is
used to indicate which data element is to be read in next. When the first READ statement is
encountered, this pointer indicates the first data item to be read in the DATA statement. A
subsequent READ causes the pointer to advance to the next data item. It is possible, through
the use of the keyword RESTORE, to reset the pointer to the first data item in any specified
DATA statement in the program. To illustrate, consider the following tabulation of state-
ments and their effects:

REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
INPUT

Pointer Position after Contents of Variables
Statement Execution after Statement
Execution
D
1000 DATA 5, 10, 15,20 N/A N/A
POINTER A:b E: *
B: 10 F:*
|5,] 10,[15,] 20]
1010 READ A, B, C,D C: 15 G: *
D: 20 H: *
POINTER
1020 RESTORE |5, | 10, [15,[20] Same as above
(POINTER) A:b E:5
B:10 F:10
1030 READE, F, G, H (5, | 10, [15,] 20 |
C: 15 G: 156
D: 20 H: 20

*Indicates that the variable is in an undefined state

The syntax form for RESTORE is:

[Line number] RESTORE [line number]

To reiterate, the purpose of RESTORE is to reset the data pointer to the first data item in
the specified DATA statement in the program thereby “‘reactivating” it.

So far, you are able to input data to the Graphic System by using the READ and DATA state-

ments, and have the option of using RESTORE. Other methods of inputting data exist, and
one of these is accomplished through use of the keyword INPUT.

PLOT 50 PROGRAMMING REV A, SEP 1978 2-11

ESSENTIALS OF BASIC
INPUT

The INPUT Statement

The INPUT statement differs from the READ and DATA statements in that the INPUT state-
ment allows you to enter data at program run-time. That is, when the BASIC interpreter en-
counters an INPUT statement during program execution, it places a blinking question mark
on the screen and stops, awaiting data from the Graphic System keyboard.

The syntax form for INPUT is as follows:

[Line number] INPUT numeric variable [, numeric variable] . ..

As was the case with READ, the form of INPUT will be expanded later on in the manual.

The following two statements illustrate the use of INPUT:

1609 INPUT A
1018 INPUT X,Y,2

When the BASIC interpreter detects an INPUT statement, the following interaction occurs:

#® The BASIC interpreter generates a blinking question mark on the screen, then stops,
awaiting data from the Graphic System keyboard.

* You, the operator, then enter the appropriate data from the keyboard, then signal the
fact that you have done so by pressing the RETURN key.

#* The BASIC interpreter then takes the data you have entered and assigns it to the variable

specified in the INPUT statement.

Note from the example (statement 1010 above) that you can input data for more than one
variable with a single INPUT statement by separating the variables with commas. A question
mark appears for each variable specified.

2-12 REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
OUTPUT

OUTPUT

The PRINT Statement

With the information presented so far, you are able to input data into the system and assign
it to variables. By combining the variables with operators and functions (forming expressions)
you can do things to the data — addition, subtraction, etc. — but as yet there is no way to
output the results. One way to obtain output is to print it on the Graphic System display;
this brings up the keyword PRINT. A PRINT statement does just what you expect — it
causes the assigned value of a specified variable to be printed. The syntax form is:

[Line number] PRINT numeric expression

where the numeric expression is reduced to a single numeric value. Now you can write a
series of statements that begin to do something:

989 READ X,Y
919 DATR 160,4
928 LET Z=X/Y
330 PRINT 2
540 PRINT 212

The five statements above input data, perform an operation on it, and output the result. If
the five statements are executed as a complete program, the variables (X, Y, and Z) are as-
signed the following values:

VARIABLE | X | Y | Z
CONTENTS || 100 | 4

The PRINT in statement 530 causes the current value of Z to appear on the screen, and the
PRINT in statement 540 evaluates and displays Z2.

PLOT 50 PROGRAMMING REV A, SEP 1978 2-13

ESSENTIALS OF BASIC
OUTPUT

2-14

Print Fields

The Direct View Storage Tube of the Graphic System displays 35 lines of text, each capable
of containing 72 characters. An internal tab function effectively divides the display into four
fields. Each field can contain up to 18 characters as shown in the following diagram.

|
< 18 char. = | < 18 char. > | < 18 char. >, < 18 char. —

I
I
| 72 characters maximum per ling ————————
| ' I
I
|
!
I

| | 35 lines

| | |

. AN A N\ /
—~—

Field 1 Field 2 Field 3 Field 4 (

I
I
I
I
I
|
|

When the BASIC interpreter executes a statement such as. . .

PRINT A,B,C,D

the comma delimiters result in the automatic generation of a tab. This tab causes the results
of the next numeric expression to appear left-justified in the next print field on the display.
Thus, the maximum number of values that can be printed on one line, using the comma as
the delimiter, is four.

This feature provides a convenient, automatic method of formatting output into four orderly
columns. For example, if a PRINT statement is followed by five variables, the fifth variable
is positioned in the first print field of the next line. One restriction: a PRINT statement can
not end with a comma; e.g.,

PRINT A, B, C, D,

is not allowed.

REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
OUTPUT

Suppressing the Automatic Tab

Occasionally it is desirable to suppress the tab function in a PRINT statement. This can be
done by replacing the comma delimiter with a semicolon, as in . . .

PRINT A; B; C

Numeric variables are represented internally with a leading blank space; i.e., the number 12345,
for example, can be thought of as having an internal representation of . . .

$12345

where “§" represents a leading blank. The presence of the semicolon as a delimiter tells the
BASIC interpreter to output the variable exactly as it is represented internally, starting at

the present location of the cursor. The four print fields associated with the comma have no
effect. The result is that a blank space separates numeric variables that are displayed in this

fashion. There is an exception, however, when string constants are involved. This is discussed
next.

Outputting String Constants

A string constant is any collection of alphanumeric characters enclosed in double quotes,
asin

“THIS IS A STRING CONSTANT"

To output a string constant use the PRINT statement as follows:

[Line number] PRINT string constant

This opens up numerous possibilities for making your output more meaningful.

For example:

1860 READ X,Y

110 LET S=X/vY

126 PRINT “THE ANSWER IS ";5
130 DATA 137,5

149 END

PLOT 50 PROGRAMMING REV A, SEP 1978 2-15

ESSENTIALS OF BASIC
OUTPUT

Note the use of the semicolon in line 120 to suppress the tab. This results in having the value
of S appear right next to the printed message for best readability. Notice also the presence of
a space at the end of the message in line 120. This is included for readability in the resulting
output; the numeric variable S is not output with a leading blank, because the leading
blank associated with numeric variables is suppressed when the numeric variable is preceded
by a string constant in a PRINT statement. The output:

RUN
THE ANSWER 1S 27.4

If quote marks appear within the string constant, there is an additional requirement. Suppose
you want to print on the screen

THE "REAL" ANSWER
If you think about it, it is clear that you can not do it this way:

100 PRINT "THE "REAL" ANSWER"

The reason is that the BASIC interpreter prints out everything between the quotation marks,
and they appear to end (in this case) right after the word THE. A syntax error results. The
solution:

188 PRINT "THE ""REAL"" ANSWER"

To print out quotation marks, just double them. One thing to be aware of: you should never
have an odd number of quotation marks in a PRINT statement.

2-16 REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
CONTROL

CONTROL

Terminating Program Execution

One of the essential tasks in programming is to control the execution order of the state-
ments in your program. Some measure of control is made possible through the fact that all
statements in a program must be numbered, and they are executed in numeric sequence. An
additional control feature that is required is the ability to terminate program execution. This
suggests that there is a keyword in the BASIC language corresponding to this need, and in-
deed there is: END. The syntax form is:

[Line number] END

It is good programming practice to always use an END statement as the highest numbered
statement in a program.

While END accomplishes program termination, another keyword, STOP, allows temporary
breaks in program execution. One reason you might use STOP is to momentarily halt exe-
cution of a program that is not working the way you thought it would, so you can examine
the current contents of variables. Or, you might want the BASIC interpreter to pause at
some point in program execution. The syntax form for STOP is:

[Line number] STOP

When encountering a STOP statement, the BASIC interpreter generates the message:

PROGRAM STOPPED PRIOR TO LINE n

where n represents the statement number of the next statement beyond the STOP. To re-
sume running the program, type RUN followed by the statement number n, then press
RETURN.

The main difference between END and STOP is the fact that STOP can be thought of as a
pause, while END completely terminates execution.

A Sample Program

At this point, sufficient programming techniques have been discussed to permit the writing
of a complete, though not elegant, program. This particular program finds the roots of a
quadratic equation of the form

ax? +bx+c=0

PLOT 50 PROGRAMMING REV A, SEP 1978 2-17

ESSENTIALS OF BASIC
CONTROL

2-18

You supply the program with values for a, b, and ¢, and the program calculates the values
for x. These values of x become the roots of the equation, and are obtained from the
guadratic formula:

= —b +4/b? —4ac
2a

One of the initial problems in writing a program like this is to convert the mathematical
formula into instructions recognizable by the Graphic System BASIC interpreter. For in-
stance, the “+"" symbol is clearly a problem: no equivalent operator exists in the language.
Also, two possible roots exist for a given quadratic equation, and the BASIC interpreter
can’t assign two roots to one variable, as suggested by the single ‘’x"’ in the formula above.

One approach to the apparent dilemma is to make two formulae:

X1= —b++/b? —4ac

2a

and

X2 = —b —+/b? —4ac
2a

where X1 and X2 are the variables to which the roots of the equation are assigned. Now, the
only remaining hurdle as far as the formulae are concerned is to rewrite them in BASIC:

X1 = (-B+SQR(B12—-4*A*C))/(2*A)
and

X2= (—B —SQR(Bt 2 -4 * A *C))/(2 * A)

The “SQR", you will recall, is the square root function. ‘B 1 2" is *’B squared’’. Notice that
“4ac’ becomes ““4 * A * C", and that ““2a’’ becomes “2* A"”. The nested parentheses are
evaluated algebraically with inner-most expressions being evaluated first. Notice that the
parentheses around ‘2 * A" prevent the ambiguity which would otherwise exist: the BASIC
interpreter would divide the numerator by 2, and then multiply the result by A. Remember
that you must give specific instructions to the BASIC interpreter in the language it under-
stands.

REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
CONTROL

Here is the program:

108 PRINT "WHAT COEFFICIENT FOR A "
116 INPUT A

120 PRINT "WHAT COEFFICIENT FOR B "}
130 IWPUT B

146 PRINT "WHAT UALUE FOR C ";

156 INPUT C

160 LET X12(-B+SAR(B12-4%A%C))/(23R)
170 LET X2=(~B-SQR(B12~4%A%C))/(2%A)
180 PRINT

196 PRINT

208 PRINT “ROOT 1= "3Xi

216 PRINT "ROOT 2= "§X2

220 END

The program inputs A, B, and C (statements 100—150), obtains the roots (statements 160
and 170), and outputs the results (statements 200 and 210). Once the program is eritered
into memory, type RUN, press RETURN, and the program responds by asking “WHAT CO-
EFFICIENT FOR A?, and then stops. You then enter an appropriate number (like 1), and
press RETURN. Values for B and C are input in the same fashion. For the sample output
below, 1, 6, and 9 are used for A, B, and C.

RUN
RHAT COEFFICIENT FOR
HHAT COEFFICIENT FOR

A1
B 6
WHAT VALUE FOR C 9

ROOT i= -3
ROOT 2= -3

The 1, 6, and 9 produce the quadratic equation
1X2+6X+9=0

and both roots turn out to be —3. To solve a different quadratic equation, run the program
again and enter the appropriate values. One thing to watch for: some quadratic equations
have coefficients such that the program attempts to find the square root of a negative
number (statement 160 or 170) when the quantity (B?) is less than the quantity (4AC).
This results in an error condition. There are ways around this limitation, however, and they
will become apparent later in this manual.

Notice how the two PRINT statements at lines 180 and 190 cause two blank lines to appear
on the output. This was done to illustrate one method of adding visual organization to the
output of a program. PRINT followed by nothing produces a blank line. Also, the PRINT
statements at lines 100, 120, and 140 terminate with a semicolon. This suppresses the
normal “carriage return’’ so that the question mark generated by the INPUT statements
that follow appear after the printed messages.

PLOT 50 PROGRAMMING REV A, SEP 1978 2-19

ESSENTIALS OF BASIC
CONTROL

Unconditional Transfers

One of the greatest assets inherent in programmable computing systems is the ability to re-
peat a set of instructions over and over at a high rate of speed. This implies that you must
be able to direct the flow of program execution back to the beginning of the set of instruc-
tions which are to be repeated. In other words, you need the ability to have the BASIC
interpreter go to a given statement number, execute the statement and the ones that follow,

and then again go to the given statement number, etc. This leads up to a new keyword —
GOTO. ‘

[Line number] GOTO line number

GOTO, followed by a line number, directs the BASIC interpreter to ''go to'' the spec-
ified line number and continue executing statements from that point. This condition
is known as a "loop'". This looping ability allows a given set of instructions to be repeated.

5000 Basic.statement
5010 Basic statement

6000 GO TO 5000

The instruction to “GOTO" a certain statement number constitutes an unconditional
transfer — program control is unconditionally transferred to the specified statement number.
The brief program that follows uses a loop to input data (which in this case consists of the
numbers 1 through 10), and to output each data item plus the data item squared, cubed,
and quadrupled. Notice that the evaluation of the numeric expressions X2, X3, and X* is
performed within the PRINT statement. Also observe that the use of commas as delimiters
in the PRINT statement (line 110) produces a tabbed output, arranged into four columns.

2-20 REV A, SEP 1978 PLOT 50 PROGRAMMING

189 READ X

118 FRINT X, X12,X13,X14

128 GO 70 160

120 DATA 1,24344,5,6,7,8,9,10

1468 EMD

RUN
1 ! {
2 4 8
3 9 2?7
4 16 64
S 2% 125
6 36 216
? 49 343
8 64 32
] 81 729
10 100 1000

DATA STATEMENT INVALID IN LINE 180 - MESSAGE NUMBER 34

START

* Here is a flowchart representation
of the above program. Notice the
OBTAIN ONE manner in which the loop is
DATA ITEM (X) symbolized by a line. The oval-

shaped symbol generally represents

X2 %3 x4 The arrows represent program flow.

represent input/output functions.
/ OUTPUT X, / P P P

a start/stop point; the parallelograms

ESSENTIALS OF BASIC
CONTROL

16

236
625
1296
2401

6361
10000

Incidentally, the above program is included as a demonstration only. If you run it, you will
notice that an error message “DATA STATEMENT INVALID .. ."” results. This is because,
after inputting the final data item and generating the output, line 120 transfers program
control back to line 100 where an additional READ is attempted. Since all the data has been
read in, none remains, the instruction cannot be followed, and program execution termi-
nates with the error message. The program depends on the “‘out of data’ condition to exit
the loop, which is a poor programming practice. The section which follows provides some

better ways to exit loops.

PLOT 50 PROGRAMMING REV A, SEP 1978

2-21

ESSENTIALS OF BASIC
CONTROL

2-22

Conditional Transfers and Branching

The earlier discussion about unconditional transfers employed a loop which relied on an
“out of data” condition for program termination. That method was shown to be poor, but
it still worked. Suppose, however, that you wanted to do a further operation after reaching
an end of data condition. This suggests that there must be two paths that program execution
can take: one path being the “‘not out of data” path, and the other being an ““out of data”
path. With two paths available, provision must be made to decide which path to take. The
decision needs to be made based on the conditions that exist; for example, if the data is ex-
hausted take one path; otherwise, continue with the sequence that reads in data.

This leads up to the subject of conditional transfers, and the associated BASIC statement
IF...THEN.. .

[Line number] IF numeric expression THEN line number

Examples:

100 IF ACB THEN 500
298 1F X>0 THEN €50
250 IF X=-99 THEN 150

As you can see, the IF. .. THEN. . . instruction implies a “GO TO". That is, it can be
viewed as saying (for example):

510 IF A=5THEN (GOTO) 600.

As you can see, the IF ... THEN . .. instruction permits you to employ the decision-
making capability of the BASIC interpreter. This, in turn, permits program control to be
transferred to one of two paths based on the logical conditions. Consider the following short
program, which is similar to the one given earlier with the discussion on unconditional
transfers.

160 READ X

110 IF X=-99 THEN 150

126 PRINT X,X12,K13,X14

136 GO TO 100

149 DQTQ 1;2,3,4,5)6,7,899)10,‘99
158 END

REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
CONTROL

RUN
1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
] 2% 125 623
6 36 216 1296
? 49 343 2401
8 64 S12 4096
9 81 729 6361
1¢ 100 1000 10000

(START)

READ IN
NEXT DATUM
(X)

This flowchart reveals the operation of the
IF ... THEN ... statementin line 110. The
diamond shaped symbol represents a
decision, and you can see the two alternative
execution paths labeled “‘yes’’ and “no”. If
the condition is true (if the next data item is
—99), execution stops. If the condition is
false, then control ‘“falls through” the state-
ments within the loop continue to be
executed.

OUTPUT
X, X2, X3,
X4

END

Notice, in statement 140, the presence of the quantity —99 included at the end of the data.
This data element is a “dummy’’ — that is, the —99 is not intended to be incorporated as
valid data, but is included as one method of marking the end of the data list. Now, examine
the IF ... THEN ... statement at line 110. It says, ‘“Check the current contents of X. Test
to see if it equals —99. If the condition is true (if it does equal —99), then go to statement
150. If the condition is false, go to the next statement (120) and continue.” The inclusion
of the dummy data item, and the subsequent testing for it, provides an effective means of
exiting the loop.

PLOT 50 PROGRAMMING REV A, SEP 1978 2-23

ESSENTIALS OF BASIC
CONTROL

2-24

The term numeric expression in the syntax form for the IF ... THEN . .. statement requires
some elaboration. This has the form

numeric expression relational-operator numeric expression

Note that the ““numeric-expression’’ signifies that ‘“‘complex’’ comparisons are permitted,
asin

A*B 12+3<=D1*t(N+1)

The “relational operator’’ can be any one of the six such operators discussed earlier:

< Less than
> Greater than
<= Less than or equal to

= Greater than or equal to
<> Not equal to
= Equal to

The important thing to remember about conditional transfers is that control is transferred
only if the numeric expression is true (i.e., evaluated to a 1). Restated, a branch occurs if
the condition is true. If the condition specified in the numeric expression is not true, then
program control simply ““falls through’’ to the next statement in the program.

The previous example program utilized a dummy data item andan IF ... THEN . .. state-
ment to exit a loop. That approach provided indirect control over the number of times the
loop was executed; termination stopped when the dummy was encountered. The IF . ..
THEN ... statement can also be used to determine when to exit a loop based on the number
of times the loop is repeated. To do this, you need to set up a counter to keep track of the
number of times the loop repeats.

Suppose you want to devise a program that inputs an integer n, and then outputs the sum
of the first n even integers. For instance, if you set n equal to five, the program outputs the
sum of the first five even integers:. _

o o o AN

sum = 30

REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
CONTROL

One approach to writing such a program is to organize the routine into flowchart form, and
then write the statements to perform the necessary steps. As already suggested, a require-
ment exists for a counter; also, the program needs a place to sum the even integers. In ad-
dition, a provision must be made to determine when n even integers have been summed.
Here is a flowchart that incorporates these ingredients:

(START)

The rectangle signifies a processing function, like

INITIALIZE: changing values in a variable, etc. ““Sum’’ be-
SUM <0 comes S in the program; “‘counter’’ becomes
COUNTER <1 C. These variables must be initialized so they can

be used later in the routine. The arrow indicates
“is assigned the value of"’ or “receives”’.

INPUT :ere is where the program inputs the integer
N .

The n even integers results by multiplying
EVEN INT. <« the current value of the counter by 2. The
(2 * COUNTER) even integers are the numeric variable E in
the program.

The sum is a running total of the even numbers
SUM < (SUM + added to the current value of ““sum”’. The need for
EVEN INT.) the initialization of “sum” to zero is now apparent;
otherwise, the first time through the loop, “sum’’
would be undefined.

YES Test to see if the loop has repeated N times by comparing
the current value of the counter with N. Branch out of the
loop when the counter reaches N.

NO

COUNTER <« Increment the counter by adding 1 to its current value.
(COUNTER + 1)

OUTPUT Print out the total. Control is not passed to this point
THE SUM until the loop is repeated N times.
END

PLOT 50 PROGRAMMING REV A, SEP 1978 2-25

ESSENTIALS OF BASIC
CONTROL

2-26

Now that the routine is organized into flowchart form, the program can be readily produced.

The output follows, using n = b5:

100 LET 5=6

116 LET C=1

120 PRINT "HOW MANY EVEN INTEGERS ";
130 IHPUT N

149 LET E=2%C

150 LET S=S+E

166 IF C=N THEN 190

170 LET C=C+{

188 GO TO 140

190 PRINT "SUM OF FIRST “jN;* EVEN INTEGERS= "j$S
200 END

RUN
HOW MANY EVEN INTEGERS 5
SUM OF FIRST S EVEN INTEGERS= 30

The above exercise introduces the concept of initialization and also demonstrates how an

IF ... THEN ... statement (or conditional transfer) is used to control the number of itera-
tions (or successive repetitions) that are performed by a loop. In addition, the exercise illus-
trates some additional use of alphanumeric strings in input/output statements.

FOR/NEXT Loops

Loops have been discussed earlier, but somewhat casually. Some special pr/ovisions have been
built into the language to facilitate the use of loops and to make them more convenient to
employ. Remember that the use of an IF . .. THEN .. . statement to determine the number
of loops entails the consecutive use of a counter, and you branch out of a loop when the
counter reaches a certain limit. The whole purpose of computing systems is to make things
easier, and having to manipulate counters and conditional transfers falls somewhat short of
this objective.

BASIC includes a looping capability known as ““FOR/NEXT loops”. An example:

168 FOR I=1 TO 10
110 PRINT I
126 HEXT I

REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
CONTROL

The above FOR/NEXT loop generates an output as follows:

=0 00~ O\ U B N o=

FOR/NEXT loops still utilize counters, and still have a test to see if the counter has reached
its limit. However, these operations are performed automatically by the BASIC interpreter.
All you need to do is to specify how many times you want the loop to repeat. To repeat
5,000 times, you specify . ..

200 FOR =1 to 5000

(statements to be repeated inside the loop)

300 NEXT |

If you want the loop to repeat n times, where n is defined earlier in the program, you can
write:

500 FORJ=1to N

(statements to be repeated)

610 NEXT J’

PLOT 50 PROGRAMMING REV A, SEP 1978 2-27

ESSENTIALS OF BASIC
CONTROL

The syntax form for FOR/NEXT loops is as follows:

Line number FOR numeric variable = numeric expression TO numeric expression
[STEP numeric expression]

(statements to be repeated)

Line number NEXT numeric variable

The numeric variable with the FOR and NEXT statements must be the same; that is, you
cannot say
100 FOR1=11t0 10

150 NEXT X (

The first two numeric expressions indicate the range through which the numeric variable is
incremented. The quantity by which the numeric variable is incremented is specified by the
optional protion of the FOR statement (STEP numeric expression). If you omit this part of
the FOR statement, the increment, or STEP value, is assumed to be one. Restated, STEP
has a default® value of one. This means that the following pair of FOR/NEXT loop program
segments perform the same number of repetitions.

100 FOR | = 1960 to 1980

150 NEXT |
200 FOR | = 1960 to 1980 STEP 1

250 NEXT |

*In this manual, the term “default’’ refers to initial conditions or parameters set by the Graphic System. (

2-28 REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
CONTROL

If you want the numeric variable to be incremented, or “STEPed’’, by some quantity other
than one, you specify the desired increment. This increment can be positive or negative.

Here is how a FOR/NEXT loop works:

1.

ba.

5b.

When the BASIC interpreter first encounters a FOR statement, the initial numeric ex-
pression is evaluated, and the result is assigned to the specified numeric variable.

Next, the body of the loop (or statements to be repeated) is executed.

When the NEXT statement is encountered, the BASIC interpreter increments the
numeric variable by an amount equal to the STEP.

Then, the BASIC interpreter tests to see if the current value of the numeric variable
exceeds the range as indicated by the final numeric expression.

If the numeric variable is still within range, program control is transferred back to the
first statement in the body of the loop.

If the numeric variable has been incremented to a value beyond its range, then control
is transferred to the statement in the program which follows the NEXT statement.

PLOT 50 PROGRAMMING REV A, SEP 1978 2-29

ESSENTIALS OF BASIC
CONTROL

The following flowchart summarizes the operation of the FOR/NEXT loop. The numeric
variable is assumed to be ““I”” in this example.

]

I < INITIAL
VALUE

EXECUTE
BODY
OF LOOP

INCREMENT
|

IS
I WITHIN
YES RANGE ?

NO

GOTO
STATEMENT
FOLLOWING
“NEXT"

FOR statement causes | to receive the value of
the initial expression.

The body of the loop is always executed once.

The NEXT statement increments | by the amount
indicated by the STEP.

The NEXT statement tests to see if the numeric variable
is still within range. If it is, the body of the loop is ex-
exuted again, repeatedly, until the numeric variable goes
out of range. When it does, program control is trans-
ferred to the statement following the NEXT statement.

The following program tabulates the relationship between fractional inches, the decimal
equivalent for each fraction, and the metric equivalent in centimeters. Two FOR/NEXT loops
are employed; the first one utilizes the default step value of 1, the second uses a step value

of —1.

2-30

REV A, SEP 1978 PLOT 50 PROGRAMMING

~

ESSENTIALS OF BASIC
CONTROL

168 PRINT "INCHES", "DECIMAL"
110 PRINT "(FRACTIONAL)", "EQUIVALENT", "CENTIMETERS"
120 FOR I=1 TO 5@

130 PRINT "x"j

140 NEXT I

150 PRINTY

160 FOR I=16 TO 1 STEP -1
170 D=]/16

180 C=Dx2.54

190 PRINT 13"716",D,C

200 NEXT I

210 END

The output produced by this program is as follows:

INCHES DECIMAL

(FRACTIONAL) EQUIVALENT CENTIMETERS

EXXEXRREREXRARLS AR RALRARAXRRRRRRRRXKAXRRRRRRRERLS
16716 i 2,54
15/16 9.937% 2.38125
14716 | 9.875 2.2225
13/16 9.8125 2.986375
12/16 9.75 1.908
11/16 0.6875 1.74625
10716 9.625 1.5875
9/16 9.5625 1.42075
8/16 0.5 1.27
7/16 9.4375 1.11125
6/16 9.375 9.9525
5/16 9.312% 9.7937%
4/16 0.25 9.635
3/16 9.1875 8.47625
2/16 9.12% 9.3175
1716 9.8625 9. 15675

The first loop (lines 120 through 140) is used only to output 50 asterisks horizontally. State-
ment 130 constitutes the body of the loop. The variable *“I”, is not really used to do any-
thing within the body of this particular loop; it functions only as a counter. The terminating
semicolon suppresses the normal “carriage return’’ function. The “PRINT nothing’’ state-
ment 150 prints a blank character following the last asterisk, then returns the alphanumeric
cursor to the beginning of the next line on the screen.

The second loop (statements 160 through 200) employs an increment of —1 for the STEP
value. The first time the body of the loop is executed, | is set to 16. The second loop occurs
with | equal to 15. When | finally reaches its final value (1), the loop terminates. Notice
that, in this loop, the numeric variable is utilized within the body of the loop. The first
column of numbers in the output is formed from a composite of the current contents of
the numeric variable, and the alphanumeric string *//16"". You can see the value of | decre-
ment from 16 to 1 in this column.

PLOT 50 PROGRAMMING REV A, SEP 1978 2-31

ESSENTIALS OF BASIC
CONTROL

One practice to avoid when using FOR/NEXT loops is branching into the body of a loop
from some statement outside the loop. That is, recalling the flow diagram representation of
a FOR/NEXT loop presented earlier, do not construct a program such as the following:

T

IIFOR'I
STATEMENT

Beginning of FOR/NEXT loop.

. \\\
BASIC
STATEMENTS

\\l\ N & Body of loop.

BASIC
STATEMENTS

AN\

“NEXT"
STATEMENT

BASIC \
STATEMENTS

A branch such as this to a statement within a
FOR/NEXT loop should be avoided because
unpredictable results can occur.

End of FOR/NEXT loop.

Nesting FOR/NEXT Loops

One more thing about FOR/NEXT loops: they can be nested. This means that the body of
a FOR/NEXT loop can contain an additional FOR/NEXT loop. Consider the following pro-
gram segment:

2-32 REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
CONTROL

The first time this program segment is executed, | (in the ““outer’’ loop) retains the value of
1 while J (in the “inner’’ loop) assumes the values of 1, 2, 3, 4, and 5. Then, | receives the
value of 2, and J again becomes 1, 2, 3, 4, and 5. Finally, | becomes 3, J goes through its

5 values, and the outer loop terminates. This operation can be seen in the output produced
by the above program segment:

WHNWNWNGE NN e s e e
RBEWNMN= RABWN= NEWNN -

Loops can be nested in this fashion indefinitely, and the reason for doing so will become ap-
parent later. One thing to watch out for when nesting loops is to make sure that the loops do
not “‘cross”. That is, the control paths for nested loops should look like this:

— FORA=11t010

—— FORB=1to5b
(Body of loop)

— NEXT B
— NEXT A

The control paths should not look like the following:

— FORA=11t 10

FORB=1tob
l (Body of loop)
- NEXT A

NEXT B

PLOT 50 PROGRAMMING REV A, SEP 1978 2-33

ESSENTIALS OF BASIC
CONTROL

2-34

The Computed GOTO Statement

Up to now, three main approaches to exercising control over the flow of program execution
have been discussed: the simple GOTO (or unconditional transfer); the IF ... THEN ...

(or conditional transfer); and the FOR/NEXT loop, which provides a convenient means of
controlling the number of repetitions that a given program segment performs. Each of these
three approaches has one thing in common: each passes program control to a single specified
statement number.

Some programming tasks require that control be passed to one group of statements during
one set of circumstances, to another group during a different set of circumstances, and to
still a different group in other cases. For example, in processing inventory, data items bearing
different types of product codes might require fundamentally different segments of the pro-
gram to perform the job. One approach toward passing control to the appropriate segment
of the program cound be to construct a series of IF ... THEN . . . tests which would satisfy
the requirement at the expense of using a lot of programming. This, however, is not in
keeping with the attitude that computing systems exist to make things easier. Clearly,

what is needed is some sort of a conditional transfer with multiple branches — and this need
is fulfilled by a ""computed GOTO". Specifically, in this version of BASIC, the statement that
does thisisa GOTO ... OF . .. statement, with the following syntax form:

[Line number] GOTO numeric expression OF line number [, line number] . . . (

When a GOTO ... OF ... statement is executed, the BASIC interpreter rounds off the
numeric expression to an integer n, and then transfers program control to the nth statement
in the line number list. If n is negative, zero, or greater than the number of statements pre-
sent in the line number list, the GOTO ... OF ... statement is ignored. Control is passed to
the statement following the GOTO ... OF ... statement. Also, commas must separate the
statement numbers in the line number list.

Examples:
BASIC Statements Results
500 GOTO 2 OF 750, 800, 850 Control is transferred to statement 800. :
300 READ A, B,C Control is transferred to statement 1000.

310 DATA 75.62, 125, 3
500 GOTO C OF 800, 900, 1000, 110

100 READ X, Y X+ Y isrounded to 3, and control is trans-

110 DATA1.3,1.6 ferred to statement 500.

200 GOTO X + Y OF 400, 450, 500, 550

100 GOTO 5 OF 200, 300, 400 Ignored. There are only three statements in
the statement list.

350 X =5 Ignored. The numeric expression

360Y =12 evaluates to a negative integer.

370 GOTO X — Y of 100, 200, 300 —

REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
DOCUMENTATION

DOCUMENTATION

Documenting a Program

The statements in a program listing are not exactly material for light reading. In fact, lines of
program statements can become so obscure that it becomes quite difficult to determine what
is taking place. The problem becomes compounded when the person reading a program is not
the person who generated it. Fortunately, BASIC includes the facility for incorporating in-
formation about a program (*“documentation’’) within the program itself. Access to this
facility is gained through the keyword REMARK, formed as follows:

[Line number] REMARK [any comments of your choosing]

100
116
128

PLOT 50 PROGRAMMING

EES:E&I#*I**PRYROLL PROGRAMXE XXX X
REMARK--INITIALIZE YARIABLES

ND=0

T1=0

12=0

REMARK--READ EMPLOYEE DATA

" READ P,H

REMARK~-~TEST FOR DUMMY DATUM

IF P<@ THEN 340

REMARK--COMPUTE PAY

G=PXH

W=0,21%G

H=G~W

REMARK~~PRINT PAYROLL

PRINT "PAY RATE= “;P,"HOURS= ";H

;g{ﬁ; "GROSS= “jG,*NET= "“;N,"DEDUCTIONS= *j i
REMARK-~ACCUMULATE TOTALS

N@=NO+1

T1=T1+N

T2=T2+W

ESH?SKIEBOOP BACK TO READ MORE DATA
REMARK=-=THIS POINT REACHED WHEN DUMMY DATUM FOUND
REMARK--PRINT TOTALS

PRINT “NUMBER OF EMPLOYEES PROCESSED= "j;N@
PRINT "TOTAL NET= *3;T1

PRINT “TOTAL DEDUCTIONS= *;T2

DATA 3.135,40,3.85,40,4.15,40,3.75,35

ga;ﬂ ~999.99,-999.99

REV A, SEP 1978 2-35

ESSENTIALS OF BASIC
DOCUMENTATION

2-36

Notice in statement 110 that the REMARK doesn’t have to contain any comments — it can
be used to just create visual organization to the program by providing spacings in the listings.
The main value of the REMARK statement, however, lies in the fact that they can make a
program readable and, hence, more readily documented and usable by others.

An output sample from the above program:

PAY RATE= 3,15 HOURS= 40

GROSS= 126 NET= 99.54
PAY RATE= 3,85 HOURS= 460
GROSS= 154 NET= 121.66
PAY RATE= 4,13 HOURS= 40
GROSS= 166 NET= 131.14

PAY RATE= 3,75 HOURS= 39
GROSS= 131.25 NET= 103.6873

NUMBER OF EHPLOYEEg PROCESSED= 4

TOTAL NET= 436.027
TOTAL DEDUCTIONS= 121.2225

REV A, SEP 1978

DEDUCTIONS=

DEDUCTIONS=

DEDUCTIONS=

DEOUCTIONS=

26.46

32.34

34.86

27.3623

PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
USER-DEFINED FUNCTIONS

USER-DEFINED FUNCTIONS

The DEF FN Statement

In addition to the various built-in functions (like SIN, COS, SQR, etc.) provided by the system,
the capability also exists which allows you to define your own functions and then use them,
similar to the way the built-in functions are used. The facility to define functions is given by
the DEF FN— (for define function) statement, with the following syntax form:

Line number DEF FN letter (numeric variable) = numeric expression

As you can see from the syntax form, a total of 26 functions can be defined (FNA through
FNZ). Some examples are as follows:

158 DEF FNA(X)=X12+3%X
230 DEF FHB(X)a(d MIN Y)+1
390 DEF FNX(A)=a3XSINCR)

The “DEF" indicates that the line contains a user-defined function, and the FNA, FNB, etc.,
is the name of the function. The numeric variable enclosed within parentheses is the dummy
variable of the function. The dummy variable is used only in the numeric expression to the
right of the equal sign; that is, execution of the DEF statement does not result in any value
being assigned to the dummy variable. The numeric expression on the right of the equal sign
can be any valid combination of numeric variables, operators, and numeric functions that re-
duces to a single numeric value.

User-defined functions are utilized by specifying a value for the dummy variable, and then
“calling”” the function. To illustrate, suppose you are writing a program that needs to evalu-
ate the following function:

f(x) = X3 =2X2 +X

Let’s say that at one point in the program, the function needs to be evaluated for X = —1,
and at a later point in the program the function must be evaluated for X = 2. The function
can be defined in the program as follows:

150 DEF FNA(X) = X13-2*X12+X

PLOT 50 PROGRAMMING REV A, SEP 1978 2-37

ESSENTIALS OF BASIC
USER-DEFINED FUNCTIONS

Now, to evaluate the function for X = —1:

240 PRINT FNA(-1)

Line 240 effects a call to the function. When the BASIC interpreter encounters a line con-
taining “FN", it looks for the corresponding DEF statement elsewhere in the program.de-
fining the function. In this case, the function is defined in statement 150. The call for the
function in line 240 says to evaluate the function for a value of —1. The dummy variable
(X) in line 150 receives the value of —1, and this value is then substituted for X wherever it
appears in the numeric expression. Thus,

f(=1) = (=10 =2(=1)2 + (1) = —4

and statement 240 prints the value —4. The function is similarly evaluated for the value of
2:

350 Y =2
360 PRINT FNA(Y)

In this case, the function is evaluated for the current value of Y. The dummy variable in the
DEF statement receives the value of 2 this time.

f(2) = (2)> -2(2)2+(2) = 2

The PRINT in statement 360 results in a value of 2. Notice, in this particular example, that
the function is evaluated twice, but the actual formula defining the function needs to appear
only once in the program. This gives you a considerable advantage in cases where long bulky
formulae are involved, because you can utilize a user-defined function rather than having to
repeat the formula each time it is to be evaluated.

The dummy variable specified in a DEF statement has an additional property that merits

consideration: it is a /ocal variable. That is, the dummy variable is not used anywhere out-
side the function. This is illustrated in the following brief program:

2-38 REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
USER-DEFINED FUNCTIONS

109 DEF FHA(X)=SQR(¥)

1108 X=19

120 Y=4

130 PRINT "FUNCTION EVALUATES TO *3;FNACY)
{23 Eﬁém “THE VALUE OF X IS "*;X

~J

RUN
FUNCTION EUALUATES TO 2
THE UALUE OF X IS 10

A simple function is defined in line 100, using X as the dummy variable. Line 110 sets the
numeric variable X to 10; X won't be used for anything other than to verify that the local
variable X in the function has no effect on the assigned value of the numeric variable X. In
statement 120, Y is set to 4; this value is used in the function call in statement 130. When
statement 130 is executed, the current value of Y (which is 4) is assigned to the dummy
variable X in line 100, and the function is evaluated, finding the square root of 4. When line
140 is executed (and this is the important point being illustrated), X is still found to be equal
to 10, even though the dummy variable X in line 100 received the value of 4.

A few remaining points should be made about user-defined functions. First, DEF FN —
statements may appear anywhere in the program, either before or after they are referred to.
Second, DEF FN — statements are not executed in the conventional sense; they only supply
the appropriate formula when the function is called from some other point in the program.
Third, one function can call another function:

258 DEF FNACK)=¥£1242%%
268 DEF FNB(X)=FNA(¥)%0,175

In evaluating FNB(X), the BASIC interpreter first computes the value of FNA(X), and then
uses that value to find FNB(X).

PLOT 50 PROGRAMMING REV A, SEP 1978 2-39

ESSENTIALS OF BASIC
USER-DEFINED FUNCTIONS

2-40

The following program employs a function within a function to output a table of centimeters,

inches, feet, and yards:

188 DEF FNACC)=C%8,3937
116 DEF FNB(C)=FNA(C)¥8,08333 v
12@ PRINT "CENTIMETERS","INCHES","FEET","YARDS"

138 FOR C=1 TO 18

140 PRINT C,FNACC),FNB(C)4FNB(C)/3

158 NEXT C
168 END

RUN
CENTIHETERS

OO0 TV B I

INCHES
8.3937
89.7874
1.1811

<9748

FEET
8.0328070821
8.865614842
8.898421063
8.131228084
8.164835185
0.196842126
8.229649147
8.262456168
8.295263189
8.328870621

REV A, SEP 1978

YARDS
0.81089356736667
8.8218712473333
8.0328687021
0.0437426945667
8.08546783683333
8.065614042
8.08765497156667
8.0874853893333
0.098421863
0.1089356736667

PLOT 50 PROGRAMMING

(,

ESSENTIALS OF BASIC
SUMMARY

SUMMARY

There are 5 arithmetic operators: 1 (exponentiation), * (multiplication), / (division),

+ (addition), — (subtraction). Exponentiation is performed first, then multiplication and
division, then addition and subtraction. Relational operators are formed with the symbols
<, >, and = to make comparisons like “/less than'’, ““greater than*’, etc. Two other re-
lational operators are the MIN/MAX operators which select the smallest or largest operand.
The logical operators are AND, OR, and NOT, which return a 1 or 0. Assignment statements
employ the assignment operator, or equals sign, to assign a value to a variable.

You can input data to the Graphic System with READ and DATA statement combinations.
RESTORE resets the DATA statement “‘pointer’ to the first data item in the DATA statement.
Data can also be input with the INPUT statement, which enables the Graphic System to re-
ceive input from the keyboard while a program is running.

The output of information from the Graphic System is accomplished with the PRINT state-
ment. The use of commas with the PRINT statement results in the generation of automatic
tabs and 18 character wide print fields. Semicolons suppress this tab. You can output string
constants with a PRINT statement, enclosing the strings within quotation marks.

Terminating a program is done with the END statement. Another keyword, STOP, allows
you to re-start a program because execution of STOP results in a printed indication (on the
screen) of what point in the program the STOP occurred.

Unconditional transfers occur with a GOTO statement; control is always (unconditionally)
passed to the specified statement numbers. GOTO statements can be used to form loops.
Conditional transfers are initiated by IF ... THEN ... combinations. |f the condition is
true, then control branches to the specified statement number. |f the condition is not true,
control “falls through’ to the next statement in the program.

FOR/NEXT loops are the most convenient types of loops to set up. You can branch out of
a FOR/NEXT loop, but you should not branch into the body of a FOR/NEXT loop. FOR/
NEXT loops can be ““nested”, i.e., one inside the other.

The “computed GOTO" capability is given by the GOTO ... OF ... statement. This state-
ment allows multiple branching of the flow of execution.

Documenting a program can be accomplished with a REMARK statement. This increases

the readability of a program listing so you can readily determine what the program is doing
at various points.’

PLOT 50 PROGRAMMING REV A, SEP 1978 2-41

ESSENTIALS OF BASIC
EXAMPLE PROGRAMS

2-42

EXAMPLE PROGRAMS

TITLE: Random Number Generator

DESCRIPTION: This program generates random numbers between upper and lower bounds
of your choosing.

PROGRAM LISTING:

168 REMARK PROGRAM FOR GENERATING RANDOM NUMBERS
110 PRINT "HOW MANY RANDOM NUMBERS DO YOU WANT? *j
120 INPUT H

132 PRINT “ENTER LOMWER BOUND: “j

148 INPUT L

158 PRINT "ENTER UPPER BOUND: "}

166 INPUT U

170 FOR I={ TO N

180 R=(U-L)XRNDC(PI)+L

190 PRINT Ry""}

208 NEXT I

218 PRINT

220 END

METHODOLOGY: A FOR/NEXT loop generates the random numbers. The value of 7 is
used as a convenient “seed’’ value for the RND function in line 180. Since a PRINT state-
ment can not end with a comma, line 190 ends with a null character string and a semicolon.
The null means “print nothing'’; this results in the 4 column tabbed output.

OPERATING PROCEDURE: Type RUN and press RETURN. The program responds with
“HOW MANY RANDOM NUMBERS DO YOU WANT''? Enter the desired number and
press RETURN. The next two promptings are “ENTER LOWER BOUND'* and “ENTER
UPPER BOUND". Enter the appropriate bounds and the random numbers are output. If
you want random numbers between 1 and 10, then the lower bound is 1, and the upper
bound is 10.

REV A, SEP f978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
EXAMPLE PROGRAMS

OUTPUT SAMPLE:

RUN

HOW MANY RANDOM NUMBERS DO YOU WANT? 108
ENTER LOWER BOUND: 1
ENTER UPPER BOUND: 18

8.06253623309 3.49452009355 3.47249467269 3.65230329655
1,46031246408 9.42154916125 1.91884963647 8.440834465532
9.43662671277 2.64332217721 9.56418734915 6.79346010227
4,91204290933 9.2955484389 8.38059465386 1.15883941292
4,50283303307 $.92623958907 8.0108819673 4.76276783949
2.37431371318 1.81424598302 3,16017263441 9.073750833022
9.42104963425 1.94340973072 7.11631586147 1.1044536233

1.182898076808 1.12070632403 2.30400279756 2.88272772721
4,77386107842 2.72789092402 5.96435334707 3.340893944419
€.28363135775 6.48186228278 4,352631798054 4,2799930637

7.59835670447 7.62061313861 8.19653541736 6.23839335877
7.085286598517 1.762157208037 5.13883483384 1.33424262303
7.13491981927 4.44961488063 8.08348144449 1,44471456072
4.66366132363 3.34061139323 9.21866818802 8.77348923589
6.19764851123 6.47469373252 2.09128302923 1.2443074642

4,31842915172 9.95751888743 2.93938236498 2.814902682133
2.996835242214 3.049505563195 4.77681740476 8.27933933389
4,281980874348 4.79338673746 8.94370343726 1,232968047232
1,94485106315 3.15105171868 3.87218383383 1.71693378973
7.63721875426 3.77413348362 6.43784784886 3.13637389492
8.45206931091 3.07140199311 9.81246331627 7.600813502094
8.048996373353 1.66298533337 3.40863350086 5.94743260428
8.97129656976 8.56848546867 2,729773351132 7.73369787074
9.55994745551 9.94086066071 3.68373177349 9.44914266669
7.57344373391 8.65104884559 J.087876334413 8.0439899249%

PLOT 50 PROGRAMMING

REV A, SEP 1978

2-43

ESSENTIALS OF BASIC
EXAMPLE PROGRAMS

TITLE: Invested Value of a Dollar

DESCRIPTION: The program outputs a table showing the value of a dollar for years 1
through 25 at 5, 6, and 7 percent compound interest (compounded annually).

PROGRAM LISTING:
106 REMARK INVESTED VALUE OF A DOLLAR

116 PRINT

120 PRINT VALUE OF A DOLLAR"

120 PRINT

149 PRINT " YEAR"," S PERCENT"," 6 PERCENT" " PERCEHT"
150 PRXNT “ _--_Il’“ ___-~_~--'I’” _________ ' _________

168 FOR H=1 TO 2%

170 PRINT Ny""j

160 FOR Rk=0,05 TO ©.87 STEP 6,01
198 PRINT C1+ROITN,""}

200 HEXT R

218 PRINT

228 NEXT N

230 END

METHODOLOGY: The computations are done in a nested FOR/NEXT loop. Lines 170
and 190 utilize the “‘null string’’ technique to achieve tabbed output and avoid the problem
of PRINT statements not being able to end with a comma.

OPERATING PROCEDURE: Type RUN and press RETURN. No data is required.

2-44 REV A, SEP 1978 PLOT 50 PROGRAMMING

OUTPUT SAMPLE:
RUN

YEAR

PO NINI N 0= s s 4t et b 0t 32 2 = DD N ATV D WD >
'Xum-—-o\omﬂmu&um»_o

n
(8]

PLOT 50 PROGRAMMING

VALUE OF A DOLLAR

S PERCENT

{

1.21550625
1.2762813625
1.340809564063
1.40718042266
1.47745544379
1.,35132821398
1.62889462678
1.71833935812
1.79585632602
1.883564914232
1.97993139944
2.087892817941
2.18287458838
2.2920183178
2.40661923369
2.32693019338
2.65329778514
2.7839623904
2.92526071992
3.07152375592
3.22509994371
3.3863549409

REV A, SEP 1978

6 PERCENT
.06
1236
.191016
26247696

. 3382255776
.41851911226
. 90363023899
.99384807433
689478939
79084769634
89829853834
2.01219647184
2.13292826015
2.26090393373
2.3965381931
2,34033168469
2.69277278377
2.85433915291
3.02559930209
3.20713347221
3.399356360035
3.60353741658
3.81974966157
4.04893464127
4.291870871974

{
)\
{
{
i
i
{
i
1
1
1

ESSENTIALS OF BASIC
EXAMPLE PROGRAMS

7 PERCENT

oy @3 08 @ w0 @ ==

1.

1.223043
1,31079601
1.40235173087
1.50073033183
1.60578147648
1.71818617983
1.83843921242
1.96713133729
2.1048319323
2.23219138896
2.40984300019
2.3783341302
2.799031%4072
2.932163748%7
3.19881321096
3.37993227373
3.61632733303
3.86968446249
4.14056237486
4.4304017411
4,74032986298
3.07236695338
S.42743264012

2-45

ESSENTIALS OF BASIC
EXAMPLE PROGRAMS

TITLE: Program to Find Possible Triangles

DESCRIPTION: This program inputs three numbers which are possible sides of a triangle.
The three numbers are examined; if they can be configured into a triangle, the program tells
you what kind of triangle is formed. Otherwise, the program informs you that the three
numbers can not be sides of a triangle.

PROGRAM LISTING:

}?g gETS?K FROGRAM TO FIND POSSIBLE TRIANGLES
120 PRINT "ENTER THREE POSSIBLE SIDES OF A TRIANGLE ";
136 INPUT A,6,C

148 IF A+B<{=C THEN 120

150 IF R+C<=B THEN 120

160 1F B+C<=A THEN 180

179 GO TO 269

186 PRINT "THESE THREE SIDES WILL NHOT FORM A TRIANGLE"
196 GO 70 110

2008 IF AC>B THEN 240

210 IF A=C THEN 268

220 PRINT “AN ISOSCELES TRIANGLE IS FORMED"
236 GO TO 1@

249 IF A<>C THEN 280

259 GO T0 220

260 PRINT "AN EQUILATERAL TRIANGLE IS FORMED"
278 GO T0 110

280 IF B<>C THEN 300

290 GO T0 220

308 PRINT “A SCALENE TRIANGLE 1S FORMED"

310 GO TO 118

326 END

METHODOLOGY: IF...THEN... statements are used to examine the three sides and to
determine into which one of four categories (isosceles, equilateral, scalene, or none) the
sides fall.

OPERATING PROCEDURE: Type RUN and the program prompts with “ENTER THREE
POSSIBLE SIDES OF A TRIANGLE". Enter the three possible sides, separated with commas,
and press RETURN. Terminate the program by pressing BREAK BREAK.

2-46 REV A, SEP 1978 PLOT 50 PROGRAMMING

ESSENTIALS OF BASIC
EXAMPLE PROGRAMS

OUTPUT SAMPLE:
RUN

ENTER THREE POSSIBLE SIDES OF A TRIANGLE- 3,4,5
A SCALENE TRIANGLE IS FORMED

ENTER THREE POSSIBLE SIDES OF A TRIANGLE 5,5,4
AN ISOSCELES TRIANGLE IS FORMED

ENTER THREE POSSIBLE SIDES OF A TRIANGLE 6,66
AN EQUILATERAL TRIANGLE IS FORMED

ENTER THREE POSSIBLE SIDES OF A TRIANGLE 3,4,11
THESE THREE SIDES WILL NOT FORM A TRIANGLE

ENTER THREE POSSIBLE SIDES OF A TRIANGLE

PLOT 50 PROGRAMMING REV A, SEP 1978 2-47

Section 3

DIRECTIVES

PROLOGUE

At this point, you are familiar with the essentials of programming in BASIC. You know how to
input data and output results, you can set up loops using several methods, you know about
conditional transfers, unconditional transfers, and computed GOTO’s. Now, before
progressing further into some of the more advanced aspects of the Graphic System BASIC
language, itisappropriate to become familiar with the statementsin the language that give you
control over the operation of the system. This subject is presented here, and is also discussed
in detail in the accompanying system reference manual. For the beginning programmer these
statements (called "directives"”) and the associated concepts are best understood in the
context of programming, because they are intended to be aids in the development of
programs.

Directives are statementsinthe BASIC interpreter’s repertoire which are primarily intended to
give you control over the operation of the machine, but also can be part of a program. You have
already been briefly introduced to one of these directives—the RUN statement. RUN is a
program control directive which tellsthe BASIC interpreter to begin execution of the program
currently in memory. Other program control directives enable you to obtain a listing of the
program which is currently in memory, remove lines of code from a program, resequence
program statement numbers, etc. There are also directives which permit you to specify the
parameters of operating "environment” of the Graphic System. This includes things like
establishing the desired trigonometric modes (degrees, radians, grads). The operating
environment also includes the comparison limits to be used in relational (IF... THEN .. .)
statements. That is, if you set X equal to 1/3, you would expect (3 * X) to be equal to 1, but
thisis notthe case. Thisis because 1/3 is represented as .333333333333 in machine language,
and therefore (3 * X) is .999999999999, not 1. To overcome this phenomenon, you can
specify the "degree of accuracy"” to be used. Typically, however, you need not be concerned
with this sort of thing, because there is a built-in default "closeness value” parameter which is
used.

In addition to the directives that give you program and environmental control, there are
directives which give you control over the operation of the internal magnetic tape unit. This is
especially useful because it allows you to store programs or data ontape for later use. Without
this facility, you would have to enter a program from the Graphic System keyboard every time
you want to use it.

One further group of directives facilitates memory monitoring. With these directives, you can
determine the amount of memory a program requires, and you can also determine the amount
of free space remaining in the memory. These memory monitoring directives let you
conveniently determine the amount of tape storage that is required to store a program. They
also let you determine if sufficient memory remains to append, or add, a program from tape to a
program that is already in memory.

PLOT 50 PROGRAMMING REV A, SEP 1978 31

DIRECTIVES
PROGRAM CONTROL

PROGRAM CONTROL
The RUN Statement

The program control statement that you are already somewhat familiar with is RUN. The
general form for this statement is:

[Line number] RUN [Line number]

Note that there is an optional statement number preceding RUN, indicating that this statement
can be used in a program. Normally, this is not done. The effect is to transfer control to the
statement number following the word RUN, or, in the absence of any such number, control is
transferred to the first statement in the program.

If you type RUN and do not follow it with a statement number, the Graphic System begins
program execution starting at the lowest numbered statement in memory. RUN followed by a
statement number starts program execution at the specified statement number. This is useful
when you want to bypass a portion of your program. This might be the case when you want to
examine the results of some part of the program which is near the end, without running the

whole program.

Entering a statement such as RUN 500 causes execution to begin at the specified statement
number, and all previous statements are skipped. This means that all variables which are
defined earlier in the program are either going to have no values assigned to them, or they are
going to contain their previous values (if any). This can affect your results.

The LIST Statement

To obtain a listing of your program, just type LIST. The syntax form for this statement is:

[Line number] LIST [line number [, line number]]

As with RUN, you caninclude LIST as part of your program. Generally, however, this statement
is used without a preceding statement number (i.e., not as part of a program) for the purpose of
obtaining alisting of the statements in a program. LIST with no parameters causes the entire
program to be listed. LIST with one line number causes the specified statement to be listed. If
you specify a beginning line number and an ending line number, then only the program
statements bounded by the specified statement numbers are listed.

3-2 . REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
PROGRAM CONTROL

Examples:
LIST Lists entire program on the screen.
LIST 500 Lists statement 500.
LIST 100,400 Liststhe portion of the program beginning at

statement 100 and continuing through 400.

If you want to list everything between the end of a program and a specified line number in the
program, and you don’t know the number of the last statement, you can just specify an

artificially high number as the ending line number. Forinstance, LIST 250,9999 lists everything
between 250 and the end of the program, even though the last line number might be 550 or 600.

The DELETE Statement

Frequently you will want to delete lines from your program. For example, a common program
debugging techniqueisto place extraneous PRINT statements at key positionsinthe program
so that you can examine the contents of variables. Later, you will probably want to remove
these statements from the program. This is facilitated by the DELETE statement, formed as
follows:

ALL
[line number] DELETE { line number [, line number] }
variable list

DELETE ALL does what you would expect: it deletes the entire program in memory, plus all
variables. In effect, it "erases” memory so that you can start all over. DELETE followed by aline
number resultsin the deletion of the specified line from memory. DELETE followed by twoline
numbers deletes all lines in memory between and including the specified line numbers. If you
want to delete a variable from memory, just type DELETE followed by the variable (or

variables). You can delete several variables with DELETE by separating them with commas.
Onceyoudeleteavariable, itis gone. Itisn't setto zero, itis removed from memory com pletely.

PLOT 50 PROGRAMMING REV A, SEP 1978 3-3

DIRECTIVES
PROGRAM CONTROL

The RENUMBER Statement

While you are in the process of developing a program, you frequently make deletions and

additions. This can result in a disorganized procession of statement numbers. Also, you can
end up making so many additions between two originally adjacent statements that no room

existsfor further additions. For whatever reason, you might wantto renumber the statementsin
your program. This can be done with the following statement:

[Line number] RENUMBER [numeric expression[, numeric expression[, line number] 1]

This statement can be used with no parameters, or 1, 2, or 3 parameters. When RENUMBER is
used by itself, the renumbering process makes the first statement with line number 100 or
greater become line number 100 unless line numbers below 100 are part of the program. (Line
numbers below 100 remain unchanged.) Subsequent statements are numbered with an
increment of 10 (i.e., the first statementis 100, the second is 110, and the third is 120, etc). If you
don’t want the first statement to be 100, you can indicate your preference with the first
parameter. For instance, to renumber a program so that the first statement is 500, just say
RENUMBER500. Thisresultsin the first number statementin the program being setto 500. The
second statement is 510, the third 520, etc. (The default numbering increment of 10 is still in
effect.)

If the default increment of 10 doesn’t suit your needs, this can be altered through use of the
second parameter in RENUMBER. This way, a statement like RENUMBER 100,5 causes the

first statement in the program to be 100, the second 105, followed by 110, etc. Notice that in
order to usethe second parameter, you must specify some number for the first parameter. This
only makes sense—if you attempt to obtain a numbering increment of 5 by saying RENUMBER
5, you are presented with a program numbered 5, 15, 25 and so on. The third parameter of
RENUMBER allows youto renumber everything starting with the specified statement. It might

happen that you are developing a program with statement numbers like the following:

100
110 _ |
120

290
300
310

REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
PROGRAM CONTROL

Suddenly, you discover that you need to add fifteen or twenty statements between statement
numbers 290 and 300. No problem. You can easily obtain the necessary room through use of
the third parameter of RENUMBER by specifying something like the following:

RENUMBER 500, 10, 300

This changes the statement numbers of the program as indicated below:

Before After
100 100
110 110
120 120
290 290
300 500
310 510

The RENUMBER 500, 10, 300 statement instructs the BASIC interpreter to renumber the
program, using 500 as the statement number and an increment of 10, beginning at statement
number 300. Itis now convenient to add numerous additional statements after statement 290.
Previously, you could add only 9 statements after 290 before you would have started writing
over, and thereby losing, statement 300.

RENUMBER used with 0, 1, or 2 parameters does not renumber existing statements with line
numbers less than 100. That is, if you have a program with line numbers 2, 4, 6, and 8 and type

RENUMBER 100, nothing happens. However, RENUMBER 100, 10, 2 changes the 2, 4, 6, 8 to
100, 110, 120, 130.

By now, you may have wondered what happens when you RENUMBER a program
containing GOTO statements. After all, if you have a statement like GOTO 150 or GOTO 3
of 115, 175, 205 and then renumber everything, you would think that control is likely to
end up “going to” the wrong place. Fortunately, that potential problem is averted by the
fact that the renumbering process updates all GOTO type statements. That is, if you have
a statement like GOTO 355, and then do a RENUMBER so that statement number 355
becomes, for instance, statement number 450, the GOTO statement will automatically be
updated to GOTO 450. However, if like numbers are used as arguments in CALL
statements, RENUMBER will not update them.

PLOT 50 PROGRAMMING REV A, SEP 1978 35

DIRECTIVES
PROGRAM CONTROL

3-6

Now, to quickly review the RENUMBER statement:

* RENUMBER used by itself with no parameters resequences the program so that the first
statement containing line number 100 or greater becomes line number 100, and the
incrementis 10,asin 110, 120, 130, 140, etc. The default parameters of RENUMBER are 100,

10, 100.

specified number. The increment remains at 10.

RENUMBER with one parameter sets the number of the first statement inthe program to the

When used with two parameters, RENUMBER sets the number of the first statement in the

program to the number specified in the first parameter. The increment that is used to number
subsequent statements in the program is the number specified in the second parameter.

RENUMBER with three parameters is similar to the two parameter version, except that the

numbering begins with the statement number specified in the third parameter.

* The renumbering process automatically updates all statement number references (like
GOTO 510) in the program, except those that appear in CALL statements (like CALL

“BAPPEN", 2000).

REV A, SEP 1978

PLOT 50 PROGRAMMING

DIRECTIVES
MEMORY MONITORING

MEMORY MONITORING
Memory Bytes

One very useful piece of information to have about any given program is its size, i.e., the
amount of memory required by the program. The size of a program is determined not only by
the number of statements involved, but also by the usage of variables and the amount of data
that is stored. Obviously, the more variables and data you use in a program, the more demand
you make on the Graphic System memory.

When you begin to store programs on magnetic tape, you need to know the approximate size of
the programs you intend to store so that you can set aside an appropriate amount of space on
thetape. Also, one clue to the efficiency of a program is the amount of memory it requires. That
is, giventwo programs that perform an identical task, the one that requires the least memoryis
likely to be the most efficient.

The unit used to describe the memory requirements of a program isthe byte. A byteisagroup
of eight consecutive binary digits (1’s and 0's) which are operated upon as a unit. A statementin
a program which we see represented as alphanumeric text might be represented in internal
binary notation by 20 or 30 bytes.

The SPACE Function

There is a directive in the language which you can use to readily determine the amount of
memory, expressed in bytes, that a program requires. This directive is actually a function like
Pl itis the SPACE function. If you type SPACE and press RETURN, a number appears on the
display which indicates the upper bound of the number of bytes required to store the program
currently in memory. The number returned by SPACE corresponds to the number of lines in
the program multiplied by 72. (72isthe maximum number of characters that can be on one line
of the screen.) SPACE can also appear in a program, as in the following lines:

135 PRINT SPACE
180 LET X=SPACE % 2

PLOT 50 PROGRAMMING REV A, SEP 1978 37

DIRECTIVES
MEMORY MONITORING

The MEMORY Function

A second memory monitoring directive is the MEMORY function. This function provides the
amount of "free” (unused) memory, expressed in bytes, that remains in the random access

read/write memory. This function is similar to the SPACE function in the way it is used: just
type MEMORY to obtain atally of the amount of free memory remaining. Or, like SPACE, it can
be used in a program:

238 PRINT MEMORY
410 LET X=MEMORY + S8

It is appropriate at this point in the discussion to give the structure of the random access
read/write memory a cursory examination. If you have a system that has, say, 8K of memory,
this means 8 kilobytes or 8000 bytes. The 8K is a “ball park” figure, because an 8K machine
actually contains 8192 bytes. (In binary devices, nearly everything depends on powers of two.
8192is2".) When you first apply power to an "8K" memory, the memory appears as follows:

0
First 2K of memory (approximately) reserved for the
processor as a working area.
2K
N\
4K Remaining 6K is free memory. The SPACE function
returns a O because there is no program in memory.
The MEMORY function returns a value of about
6K 6000 because that is how much free memory exists.
8K 7

Now, let’s assume you have written a program that requires 3000 bytes. The memory now looks
like the following conceptualization:

’//
% // First 2K still reserved as a working area for the processor.

3K utilized to contain the program. The SPACE function

4K W will now return a value of 3000.

0

2K

6K 3K of free memory. The MEMQORY function will return a
value of approximately 3000, indicating the amount of
memory remaining.

8K

3-8 REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
PROGRAMS ON TAPE

Now that you are armed with these two memory monitoring directives, you are ready to tackle
the task of using the internal magnetic tape unit.

PROGRAMS ON TAPE

The Graphic System has the ability to store programs on magnetic tape so that you do not have
to enter a program from the keyboard every time you want to runit. You can also store dataon
the tape, but the discussion of this subject is deferred until the Extended 1/0 section.

The operation of the internal magnetic tape unit involves another group of directives. These
directives give you the necessary control over operation of the tape so that you can do the
following things:

* Createfiles onthe tape. Files are sections of tape that can contain programs. Before you can
store a program on tape, you must create a file.

Store programs on tape in the files that you have set up.

Retrieve programs from the tape. The way you retrieve a program is by telling the BASIC
interpreter to load the contents of a specified file into memory.

Stack, or append, programs in memory, one after another.

List out, on the display, information about the contents of the tape.

Near the beginning of the tape there is a pattern of small holes. Inside the tape drive
mechanism, there is an optical sensing device which contains a light source and a light
detector. The tape is routed between the light source and the light detector. The pattern of
holesinthetapeallows lightto pass from the source to the detector. As aresult, the tape drive
mechanism is able to locate the beginning (and the end) of the tape by the action of light
activating the detector when the holes pass between the two.

PLOT 50 PROGRAMMING REV A, SEP 1978 39

DIRECTIVES
PROGRAMS ON TAPE

3-10

The FIND Statement

Assuming that you have a program to store on tape, the first thing you have to dois position the
beginning of the desired file at the recording head. This is done with the positioning directive:

[Line number] FIND numeric expression

The numeric expressionrefersto the file number you are requesting. To position the read/write
head at the beginning of the tape (rewind), type FIND 0. This instructs the tape drive to position
thetape at the load point, which isthe beginning of the tape. (You can also do this by pressing
the REWIND key. The only difference between the two methods is that one is programmable,
the other is not.)

File 0 does not actually exist. You can not store anythinginfile 0; itis used only to indicate the
beginning of the tape. However, once you have "found” file 0, you arethen able to create afile
that can store a program.

The MARK Statement

Files are created with the MARK statement:

[Line number] MARK numeric expression, numeric expression

The first parameter refers to the quantity of files you want to set up, and the second indicates
the length in bytes of the file or files being created.

If you want to create one file with a length of 1000 bytes, enter

MARK 1,1000

Similarly, if you want to create 5 files with a length of 1200 bytes, enter

MARK 5,1200

Typically, however, you only create files one at a time as they are needed.

REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
PROGRAMS ON TAPE

Itisagoodideato set upfilesthat are larger than necessary; this way room remainsin thefile to
accommodate any later additions to the program being stored. You determine the maximum
amount of storage that a given program requires through the use of the SPACE statement
discussed earlier. Also, a good "rule of thumb” to approximate the storage requirements for a
program isto figure 40 bytes per line of code. (Thisis a rough approximation—some lines take

considerably more, and some lines take considerably less.)

Now, suppose you have written a program and it is currently‘ residing in the random access
memory. You want to store it on tape. You have determined that the program requires, say,
1500 bytes of storage, and you are working with a blank tape. Enter:

FIND O

and the beginning of the tape is positioned at load point. Now, to create the file, type
MARK 1,3000

and the Graphic System sets up one file with sufficient length to contain the program twice

over. (The 3000 was chosen arbitrarily.) This file now exists with a physical length of 3000. It

currently has a /ogical length of 0 because, as yet, nothing has been stored there. Before the

program can be stored in this newly created file, the tape must be positioned at the beginning

of the file. To do this, just type

FIND 1

and the tape drive positions the tape at the beginning of the file.

The SAVE Statement

The actual storing, or "saving”, operation is initiated by another directive:

[Line number] SAVE [line number|, line number]]

SAVE used by itself causes the entire program currently in memory to be stored on tape in
ASCII code. SAVE with one line number stores only the specified line number. SAVE with two

line numbers stores only the part of the program bounded by and including the two specified
line numbers.

PLOT 50 PROGRAMMING REV A, SEP 1978 3-11

DIRECTIVES
PROGRAMS ON TAPE

3-12

As soon as you type SAVE and press RETURN, the system records a copy of the program in
memory on the tape. (It will record those statements which are preceded by aline number.) The
filenow has, in additiontoits physicallength, alogical length. In this case, the physical length
is 3000 bytes as established by the MARK statement, and the logical Iength is 1500 bytes,
because the program saved was 1500 bytes.

Before going any further, let's review what has happened thus far:

* FIND 0 positioned the tape at the beginning load point.

* MARK 1,3000 created a file with a physical length of 3000 bytes.

* FIND 1 positioned the tape at the beginning of the file.

* SAVE caused the machine to make a copy of the program in memory on the tape in file 1.

Actually, the MARK instruction not only "marks” the beginning and end of the file that is to
contain the program; it also "marks” the place where the following file will be located. (The
"marking” is accomplished magnetically.) This is done so that the machine can "find” the

correct place to "mark"” the next file. Following the execution of FIND 1 and SAVE, the tapeis
conceptually like this:

e File 1

éi 71]

/ /
File O Logical size (1500 bytes)H

Physical size (3000 bytes) ——————————
Beginning

Beginning of file 2
of file 1

End of file 1

Theactual program that is stored is contained inthe area represented by the logical size. Note
thatthelogical sizeis less thanthe physical size, thereby permitting expansion of the program
at a later date.

REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
PROGRAMS ON TAPE

The BSAVE Routine

Just like you can store programs in ASCII code with the SAVE command, you can store
programs in binary code with the BSAVE routine. It’s called a routine because it requires a
CALL command:

[Line Number] CALL "BSAVE"

NOTE

A 4051 Graphic System must be equipped with a Binary Loader ROM Pack before
using this routine.

Programs are stored in the Graphic System’s memory as binary code. When a program is

stored on tape with the SAVE command, it must first be translated to ASCIl. When the BSAVE
routine is used, the program doesn’t need to be translated, so the BSAVE routine takes less
time. On the other hand, ASCII code takes up less tape storage space than binary code.

The BSAVE routine sends a copy of the current program to the tape in binary code. Like the
SAVE statement, BSAVE does not alter assigned values of variables or system environmental
conditions. The CALL "BSAVE" statement can be astep inthe program being stored, orit can

be executed directly from the Graphic System keyboard. Unlike SAVE, line numbers cannot be
used with BSAVE.

To execute the BSAVE routine, the read/write head of the magnetic tape unit must be
positioned at the beginning of a file marked BINARY or NEW. The MARK statement must
allocate enough space to store the entire program.

Binary programs use more space on magnetic tape than ASCII programs. The amount
depends on the size of the file. Because the SPACE function allocates the approximate space
for an ASCII program, the SPACE function may or may not allocate enough space to hold the
entire program in binary. If you try to execute the BSAVE routine and the selected file is not
large enough to hold the current program, error message number 48 is displayed on the

screen. To make sure enough spaceis allocated to hold the current program, you can use one
of the following methods:

PLOT 50 PROGRAMMING REV A, SEP 1978 3-13

DIRECTIVES

PROGRAMS ON TAPE

METHOD A1 Allocate all of the space the program uses in memory.

For example, if your system has 32K of memory:
MARK 1, 32000 - MEM

The MEM function returns the number of bytes still available
in memory. By subtracting this amount from the total storage
capacity of memory, the remainder is the amount of space the
current program occupies in memory. This remainder is also the
amount of space needed to store the program on tape.

METHOD 2 Allocate enough space to hold the entire contents of memory.
For exampile:

MARK 1,32000
This method may waste a lot of space on the tape if the current
program is small.

NOTE

The actual storage capacity of memory is approximately 32K or 32000 b ytes. Of this
32000 bytes, about 2000 are reserved by the processor for a work area. The MEM
function only considers the 30000 bytes that are free. By using 32000 as a constant,
you canmake sure that you consider all of the possible storage capacity of memory.

The following example stores the current BASIC program in binary code.

FIND 0

MARK 1,1000
FIND 1

CALL "BSAVE"

3-14

Since this is the first file on the tape, the read/write head is positioned at the beginning of the
tape by the FIND 0 statement. The MARK statement allocates space on the tape to hold 1000

bytes. The read/write head is then positioned to the start of the allocated space

by the FIND 1

statement. The CALL "BSAVE" statement then transfers a binary copy of the current program

to file 1.

REV A, SEP 1978

PLOT 50 PROGRAMMING

DIRECTIVES
PROGRAMS ON TAPE

The OLD Statement

Now let’s suppose that, after performing some unrelated operations, youwanttorun an ASCII

program previously saved on file 1. Retrieving the program is facilitated with the following
statement:

[Line number] OLD

To get the program back into memory, enter

FIND 1
OLD

FIND 1, again, positions the tape at the beginning of file 1. OLD causes the Graphic System to
first delete everything in memory (as though a DELETE ALL statement is executed), and then
copy the logical contents of the file into memory.

When you want to save another program on tape, the process is essentially the same.
Assuming that you have already utilized file 1 as in the previous discussion, the first thingto do
is to type

FIND 2

The machine is able to locate file 2 because the process of "marking” file 1 also marks the

beginning of file 2. Now, supposing you want to establish one file with a length of 2000 bytes,
you enter

MARK 1,2000

andthefileis created. (Do not confuse the file number with the number of files specified by the
MARK statement.) You can now store a program in the second file by entering

FIND 2
SAVE

i
Ul

a’nd/é system saves the program in memory on the tape, in file 2.

/

PLOT 50 PROGRAMMING REV A, SEP 1978 3-15

DIRECTIVES
PROGRAMS ON TAPE

The BOLD Routine

[Line number] CALL "BOLD" [,I/0 address]

NOTE

A 4051 Graphic System must be equipped with a Binary Loader ROM Pack before
using this routine.

Any program that is in binary code can be loaded into memory by using the BOLD routine. A
program stored by the BSAVE routine is usually the program retrieved by the BOLD routine.

Loading a Binary Program

To retrieve a binary program from tape, the read/write head of the tape drive must first be
positioned at the beginning of a binary program file. For example, the statements:

FIND 1
CALL "BOLD"

load the binary program fromfile 1into memory. The FIND statement locates the beginning of
file 1. The BOLD routine erases everything currently in memory, then transfers the binary file
into memory. The loaded program is ready to be executed by a RUN statement or edited. Like
the OLD command, ifthe BOLD routineis executed under program control, a RUN statement is
automatically executed after the program is loaded into memory.

Using AUTO LOAD with Binary Files

The AUTO LOAD key finds the first file on the magnetic tape and then executes an OLD
command automatically. The OLD command loads and executes the first program on file.
Because the OLD command does not work with binary program files, the first program ontape
must be an ASCII program if you use the AUTO LOAD key.

REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
PROGRAMS ON TAPE

By storing an ASCII program that finds and loads a binary program in file 1, you can use the
AUTO LOAD key to automatically find and load a binary program. The following example
shows how this can be done.

Supposethatfile2isthe binary program you wish to load withthe AUTO LOAD key. Thenfile 1,
an ASCII program file, should contain this program:

100 FIND 2
110 CALL "BOLD"

When the AUTO LOAD key is pressed, the program in file 1 is loaded and executed. This
program in turn finds and loads the desired binary program in file 2. Since the CALL "BOLD"

statement is executed under program control, the binary program in file 2 is executed after
being loaded.

The TLIST Statement

Atthis point, it should be apparent that you need the facility to determine how many files exist
on the tape, and the status of each file. This capability is provided by the additional directive:

[Line number] TLIST

The TLIST statement lists out (on the screen) information about the tape that is in the tape drive
assembly. This listing is typified by the following:

TLIST

1 ASCII PROGRAM 3340
2 ASCIT PROGRAM 1792
3 ASCIT PROGRAM 4096
4 ASCIT PROGRAM 1280
] ASCII PROGRAN 3840
6 ASCII PROGRAM 768
? NEW 768
8 NEW 1824
S LAST 768

PLOT 50 PROGRAMMING REV A, SEP 1978 3-17

DIRECTIVES
PROGRAMS ON TAPE

3-18

The numbers in the left-hand column indicate the number of the file. The center column
identifies the type of file. In this case, the first six files contain programs. Files 7 and 8 are
"NEW", indicating they are "empty"” and available for use. The "LAST" file (file 9) is self-
explanatory: it is the next one to be MARKed and used. The right-hand column of numbers
indicates the physical size, in bytes, of each file, and is always a multiple of 256.

NOTE

If you "re-mark” a file, then the file following the one that is "re-marked” always

becomes the “LAST" file. Any files that may have been beyond the “re-marked” file
are lost.

The APPEND Statement

Three tape control directives enable you to append routines or programs which are on tape to

the program which is resident (currently existing) in memory. The first statement thatis used is
APPEND, formed as follows:

[Line number] APPEND line number [, numeric expression]

The appended program is inserted into the resident program beginning at the specified line
number. If you specify a numeric expression, the program lines are always renumbered using
the specified increment beginning at the specified line number and continuing through to the
end of the program. Thefile thatis appendedto the programin memory is the current file on the
tape: that is, if you precede APPEND with FIND 3 (for example), then file 3 is the file that is

appended. It is important, therefore, to make sure you precede APPEND with an appropriate
FIND statement.

The APPEND statement requires that there must be a line number in the resident program
which corresponds to the number specified after the word "APPEND". If you state APPEND
500, there must be a statement number 500 in the program currently in memory. -

REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
PROGRAMS ON TAPE

Typically, APPEND is used to "add-on" program statements to the end of the resident
program. To illustrate, assume that you have a program which begins at statement 100, and
ends with statement 410. You also have, on file 4 of the tape, additional statements which you
wantto place atthe end of the resident program. The line numbers of the statements contained
in file 4 can be almost anything—for example they run from 200 through 390. The situation is
depicted in the following:

RESIDENT PROGRAM

100
110
120
130
CONTENTS OF FILE 4

390 200
400 210
410 '

380

390

Now to append file 4 to the end of the resident program:

FIND 4
APPEND 410

PLOT 50 PROGRAMMING REV A, SEP 1978 3-19

DIRECTIVES
PROGRAMS ON TAPE

Thefirst statement of file 4, which was line number 200, becomes line number 410, and the old
line number 410islost. (It could have been an END, STOP, REMARK, etc.) Following execution
of APPEND, the resident program now looks like the following: ‘

RESIDENT PROGRAM

100
110
120
130

390
400

i’\\'\
\\ 410

420

590

600

)
.

/

CONTENTS OF FILE 4

200
210

380 (
390 \
N

il

Notice that the contents of file 4 have been added on to the end of the resident program. Also,
the appended portion has been renumbered with a default increment of 10.

The APPEND statement also allows you to insert statements into the resident program at

locations other than the end. To illustrate, assume that you have a situation similar to the

previous one: a resident program and some statements in file 4 you want to insert into the
program starting at statement 140. This is depicted below;

100
110
120
130
140
150
160
170
180
190
200

L RESIDENT PROGRAM

3-20

REV A, SEP 1978

200
210
220
230
240

L CONTENTS OF

FILE 4 . (

PLOT 50 PROGRAMMING

DIRECTIVES
PROGRAMS ON TAPE

The process is essentially the same as before:

FIND 4
APPEND 140

The resident program now looks like the following:

100
110
120
130

7 7
;; 140 7

150

200
210
160 220

230

170

190 L CONTENTS OF
200 FILE 4

210
220
230
240

DN\

L RESIDENT PROGRAM

Notice that statement 140is now the same as the first statement in file 4, and the old statement
140 is lost. Notice also that statements 150—200 have been renumbered and retained.

PLOT 50 PROGRAMMING REV A, SEP 1978

3-21

DIRECTIVES -
PROGRAMS ON TAPE

3-22

The BAPPEN Routine

[Line number] CALL "BAPPEN", Line number [,increment]

NOTE

A 4051 Graphic System must be equipped with a Binary Loader ROM Pack before
using this routine.

The BAPPEN (Binary APPEND) routine inputs BASIC statements stored in binary code on
tape and attaches those statements to the program currently in memory.

The BAPPEN routine follows the same probedure as the APPEND statement. First, the
read/write head of the tape drive must be positioned to the beginning of a binary program file
by using the FIND command. Then, when the BAPPEN routine is executed, the given target
statement is overwritten by the first statement coming from tape. The newly appended
statements and any statements that originally followed the target statement are renumbered,
starting with the target line number. The line numbers are incremented by either the given
increment, or by the default increment of 10 if an increment is not specified.

For example:

200 REM APPEND STATEMENTS FROM FILE 2 HERE
FIND 2
CALL "BAPPEN",200

When these statements are executed, the FIND statement positions the read/write head at the
beginning of File 2. File2must be a binary program file. (Error message number 55 s printed if
file2is not binary.) The BAPPEN routine replaces line 200 with the first statementin file 2. The
remaining statements in file 2 are then appended with line numbers incremented by 10.

REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
PROGRAMS ON TAPE

The LINK Routine

[Line number] CALL "LINK"”, line number

NOTE

A 4051 Graphic System must be equipped with a Binary Loader ROM Pack before
using this routine.

The LINK routine erases the program currently in memory, but retains all variables and their
currently assigned values. Then, a binary program is loaded into memory from tape. Program
execution starts at the first line number of the new program.

These features allow you to break alarge BASIC program into subroutines, store them on tape,
andthen structure the flow of execution by using the LINK routine. By using the LINK routine,
the size of a programis no longer limited by the storage capacity of memory. If memory cannot
hold an entire program, you can break the program into sections and use the LINK routine to
load and execute the program sections.

Locating the LINK Point

To use the LINK routine, the read/write head of the tape drive must first be positioned at the
beginning of a binary program file.

To locate the beginning of a binary program file, use the FIND statement. After the LINK
routineis executed, variables and values are kept and the current program is erased. The entire
binary program (previously located by the FIND statement) is then loaded into memory.

Ifthe LINKroutine is performed directly from the keyboard, execution stops after the program
is transferred. The loaded pregram can then be executed by entering a RUN statement and
pressing the RETURN key. Execution begins with the starting line number.

If the LINK routine is executed under program control, then after the binary program is
transferred, execution automatically begins with the starting line number.

PLOT 50 PROGRAMMING REV A, SEP 1978 3-23

DIRECTIVES
PROGRAMS ON TAPE

To use the LINK routine a BASIC program must be stored in binary code. As an example, the
following program is stored in file 1 ontheinternal magnetic tape unit. Since thisfileis storedin
binary code, the file is retrieved by using the BOLD routine. A LIST statement is executed to
show the program.

FIND 1

CALL "BOLD"

LIST

100 INIT

110 A$="CHANGE"

120 PRINT "SOME THINGS NEVER";A$

Now, the program is executed.

RUN
SOME THINGS NEVER CHANGE

This binary program is used in the following examples by the LINK routine.

100 A$="STAY THE SAME"
110 FIND 1
120 CALL "LINK",120

Inline 100, A$ is given the value "STAY THE SAME". The binary fileis then located by the FIND
statement. The LINK routine directs execution to begin in line 120 of the binary program.
So...

RUN
SOME THINGS NEVER STAY THE SAME

The stored binary program is now in memory. No statements have been changed. A$ retains
the value "STAY THE SAME" because execution started in line 120.

3-24 REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
PROGRAMS ON TAPE

Notice the INIT statement in line 100 of the binary program. If the LINK routine is specified by

CALL "LINK",100

then execution would begin with line 100. The INIT statement puts all variables in an undefined
state, including any variables retained by the LINK routine. A$ would be undefined. Theninline
110 of the binary program, A$ would be set to "CHANGE".

If the LINK routine is specified by

CALL "LINK",110

then A$ isretained with the value "STAY THE SAME", butis setto "CHANGE" inline 110 ofthe
binary program.

From these examples, you can see how execution and program flow can be controlled by using
the LINK routine.

PLOT 50 PROGRAMMING REV A, SEP 1978 3-25

DIRECTIVES
ENVIRONMENTAL CONTROL

3-26

ENVIRONMENTAL CONTROL

The earlier discussion about program control, tape control, and memory monitoring directives
introduced some Graphic System BASIC statements which were shown to be quite useful for
manipulating programs, but which did not help much inlearning to program. inthis sense, the
environmental control directives are similar. In fact, these particular directives are somewhat
"transparent”, i.e., when you apply power to the system, the environmental conditions are set
to default values, and these default values have been chosen for suitability to most
applications. You can generally write programs and run them without preceding your efforts
with a lot of environmental specifications, but at the same time you have the option of
exercising some useful control.

The SET Statement

The most straightforward specification is that of selecting the trigonometric units of measure.
When power is first applied to the system the trigonometric units are set to radians. That is, if
you apply power and then type SIN(5) and press RETURN the resulting number on the display
is the sine of 5 radians, not 5 degrees. If you want the sine of 5 degrees, you can cause the
Graphic System to work with degrees instead of radians through the SET statement; just type
SET DEGREES. The SET statement has the following general form:

[Line number] SET environmental condition

The environmental condition can be selected from four groups of conditions. One group, as
already suggested, allows the selection of the trigonometric units. You can select DEGREES,
RADIANS, or GRADS™ . The default selection is RADIANS.

A second group enables a special operation that traces the flow of program execution. This is
useful when you are "debugging” a program and want to examine the flow of the program. This
second group has two conditions: TRACE and NORMAL. When you say SET TRACE and then

run a program, the display contains a list of line numbers corresponding to the sequence in
whichthe statements of the program are executed. This lets you do things such as spot infinite

loops, determine if conditional transfers are working the way you envisioned them, etc. The
TRACE condition is disabled when you enter SET NORMAL. Of the two conditions in this

second group, the default condition is, as you would expect, NORMAL.

*Grad is defined as one one-hundredth of a right angle (90°).

REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
ENVIRONMENTAL CONTROL.

The third group of conditions associated with the SET statement involves the user definable
keys. SET NOKEY causes the user definable keys to be ignored while a program is running;
SET KEY causes the opposite situation. By default, the SET NOKEY condition is established
when you turn on the power. The use of the user definable keys is discussed in the "Sub-
routines” section of this manual; the KEY/NOKEY specifications are mentioned here only
because they are part of the SET statement.

Thefourth group (CASE/NOCASE) isdiscussed inthe CHARACTER STRINGS section of the
manual. Briefly, SET CASE causes all characters of the alphabet, both upper and lower case, to
be regarded as upper case. Thatis, "A" isequivalentto "a”. SET NOCASE causes the reverse;
i.e., "A" is not equivalent to "a". The default setting is SET CASE so that "A" = "a".

To reiterate the components of SET, the statement can be used to specify environmental
conditions which occur in four groups:

Default
Statement Form Setting
DEGREES
[Line number] SET { RADIANS RADIANS
GRADS
TRACE
Li b SET NORMAL
[Line number] NORIVIAL}
[Li ber] SET KEY ’ NOKEY
ine number
& numbe NOKEY
CASE
[Line number] SET ' CASE
NOCASE

PLOT 50 PROGRAMMING REV A, SEP 1978 3-27

DIRECTIVES
ENVIRONMENTAL CONTROL

The FUZZ Statement

An additional environmental control statement allows you to establish the degree of precision
the Graphic System will use when making comparisons between numbers. The BASIC
interpreter compares numbers, you will recall, in IF . . .THEN . . . statements, and also makes
comparisons when determining if the termination pointina FOR . . .NEXT . . . loop has been
reached. Like the other environmental control statements that have already been mentioned, a
default condition exists so that most of the time you need not be concerned with specifying this
closeness, or comparison, value. However, the facility exists for making this specification; the
statement for doing so is the FUZZ statement:

[Line number] FUZZ numeric expression. [, numeric expression]

As you can see, FUZZ always has one parameter associated with it,and may havetwo. The first
parameter specifies the number of digits that the BASIC interpreter considers as being
significant when making comparisonsthat do notinvolve zero. That is, if you enter a statement
like:

160 FU22 S

the machine only "looks at” the first 5 digits in making a comparison. If you go on to make
statements like:

123451111
1%3459999

119 4
120 B
130 IF A=B THEN 208

F

statement 130 transfers control to statement 200. This happens because FUZZ is set to 5, the
first 5 digits of A and B are equal, and the condition is therefore true in statement 130.

If you want to specify a closeness factor for comparisons involving zero, you enter the
appropriate value via the second parameter. That is, if you want to make a comparison like:

218 IF Y=0 THEN 1350

and if "almost zero" is suitable, then you can set the second parameter of FUZZ to 107" (for
example). You still have to specify something for the first parameter, however, so you might
write something like:

208 FUzZ2 10,1E-10

3-28 REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
ENVIRONMENTAL CONTROL

With the second parameter set to 1E-10 (107'°), anything that is less than 107" is considered to
be zero.

There are, of course, default values for FUZZ.

The default setting is:

FUZZ 12, 1E-64

This means that, in comparisons not involving zero, only the first 12 digits are "looked at” to
determine if two numbers are equal. This also means that any number less than 10 is
considered to be equal to zero in comparisons like

150 IF A=08 THEN 200

These default values are adequate for most programming applications.

The INIT Statement

Afterreading through this discussion about FUZZ and the earlier one about SET, it might have

occurred to you that you could have set the various environmental specifications to any of a
number of combinations, and it is easy to lose track of them. How, you might ask, can you get
everything reset to a known state? You could, of course, turn the power off and then back on:

that would re-establish all the default conditions. That would also wipe out your program,

however. Fortunately, there is a statement that initializes the environmental parameters to a

known state; it is the INIT (for initialize) statement, formed as follows:

[Line number] INIT

When you do an INIT, either from the keyboard or under program control, here is what
happens.

FUZZ is set as follows:

FUZZ 12, 1E-64

The machine examines the first 12 digits of numbers undergoing comparisons, and anything
less than 107 is considered to be zero in comparisons with zero.

PLOT 50 PROGRAMMING REV A, SEP 1978 3-29

DIRECTIVES
ENVIRONMENTAL CONTROL

The DEGREE/RADIAN/GRAD selection is equivalent to the following:

SET RADIAN

All trigonometric functions will be working in radians.
The TRACE/NORMAL selection becomes

SET NORMAL
The KEY/NOKEY option becomes

SET NOKEY
The CASE/NOCASE selection becomes

SET CASE
A RESTORE statement is executed.

The assigned values of variables appearing in memory become deleted. That is, if you (
were to enter statements like:

168 LET A=10
{16 INIT
120 PRINT #
130 END

and then type RUN, you would receive an error message informing you that you were
dealing with an undefined variable.

INIT also initializes some additional parameters in areas that have not been discussed yet
(particularly in Graphics); these additional parameters of INIT will be brought to your attention
in the appropriate discussions.

3-30 REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
SUMMARY

SUMMARY

Directives are programmable statements in the BASIC interpreter repertoire which allow you
toexercise control over operation of the Graphic System. RUN is probably the most often used
directive—it causes the BASIC interpreter to execute the program currentlyin memory. LISTis
also often used to examine the program in memory.

You can delete variables, specified statements, or the entire program with DELETE, and
renumber it with RENUMBER. RENUMBER also lets you renumber a specified portion of a
program, and it automatically updates all statement number references like those occuring in
GOTO and IF ... THEN.. .. statements.

SPACE informs you of the upper bound of the number of bytes required to store the resident
program. MEMORY tells you how much free memory remains. These directives are especially
useful in conjunction with storing programs on tape.

You can find the beginning of a tape file with FIND. Files are created with MARK. To save a
program on tape, first locate the beginning of the file with FIND, then store it with SAVE (for
ASCII files) or BSAVE (for binary files).

ASCII programs are retrieved from the tape with OLD. The process parallels that of storing
programs: use FIND to position the tape at the beginning of the file, then use OLD to recover
the program. An OLD statement automatically executes a DELETE ALL before transferring a
program from tape to memory. Binary files are retrieved from tape with the BOLD routine.

To examine the contents of the tape, execute a TLIST statement. This results in an itemization
of the existing files on the tape; the information appears on the screen.

You can build a program using APPEND. This statement allows you to add-on program
statements from an ASCI! file at any point in the resident program. The incoming program
steps must APPEND to an existing statement number, thereby "overwriting” it. Binary
programs can be added to the resident program with the BAPPEN routine.

Binary programs can be loaded into memory without changing any variables or values by using
the LINK routine.

The operating environment of the Graphic System can be changed from the default settings
with SET and FUZZ. SET lets you specify degrees, radians, or grads. You can also specify
TRACE or NORMAL. TRACE lets you examine the flow of program execution by providing a
list of line numbers that are executed. SET also lets you specify KEY or NOKEY to enable the
user definable keys, and the CASE/NOCASE option. FUZZ determines the "closeness value”
to be used in making comparisons.

You can restore the default conditions with INIT.

PLOT 50 PROGRAMMING REV A, SEP 1978 3-31

DIRECTIVES
EXAMPLE PROGRAM

EXAMPLE PROGRAM

TITLE: Directory Utility Routine

DESCRIPTION: This program is a simple "utility” routine which provides a directory of the
programs stored on tape. The purpose of such a routine is to simplify the task of keeping

records of what programisin whatfile. You store the directory utility routinein file No. 1. When
you press the AUTOLOAD key, the BASIC interpreter executes the program containedinfile 1,

thereby providing the directory. From this, it is convenient to go directly to the desired
program file.

PROGRAM LISTING:

108 REMARK ¥ DIRECTORY UTILITY ROUTINE %%

118 PaGE

128 PRINT "FILE®";* CONTENTS"

130 PRINT "=-eeti¥ ceccmmms "

149 REMARK ¥X INSERT DIRECTORY ENTRIES BELOW THIS LINE XX
158 PRINT 23" Name of program in file 2"

168 PRINT 33° Name of program in file 3"

178 REMARK ¥XNEW ENTRIES GO IMMEDIATELY ABOVUE THIS LINEXX
180 PRINT

198 PRINT

208 PRINT "DO YOU WANT TO RUN A PROGRAMT (YES=1, NO=2) "
218 INPUT A

228 GO TO A OF 238,288

238 PRINT "WHICH FILE NUMBER "3

240 INPUT A

250 PAGE

268 FIND A

270 OLD

288 PRINT "DO YOU WANT TO LIST THE DIRECTORY?T (YES=1, NO=2) "%
296 INPUT A

388 GO TO A OF 310,330

316 PAGE

320 LIST

336 END

METHODOLOGY: The keyword PAGE is used to clear the screen under program control.
Also, the program utilizes the directives FIND and OLD to retrieve program files under program
control. The use of LIST in line 320 causes the program to list itself.

Actually, AUTOLOAD executes the first program file on a tape, which may or may not be the first file.

3-32 REV A, SEP 1978 PLOT 50 PROGRAMMING

DIRECTIVES
EXAMPLE PROGRAM

OPERATING PROCEDURE: Withthedirectory utility routine stored infile 1 ofthe tape, press
AUTOLOAD and the Graphic System executes file 1 and displays the directory on the screen.
New directory entries (reflecting the addition of new program files onthe tape) should useline
numbers falling between the number of the line containing the last directory entry and the
number of theline containingthe REMARK which follows the directory entries. For examplein
the preceding program listing, a new directory entry could go at line 165. Youwouldthentype
RENUMBER to resequence the line numbers, and a FIND 1, SAVE sequence to store the
updated directory back on the tape.

When you press AUTOLOAD and display the directory, the routine asks "DO YOU WANT TO
RUN A PROGRAM" (YES = 1, NO = 2)". If you do want to run a program, enter a 1, press
RETURN, and the next prompting is "WHICH FILE NUMBER?" Enter the appropriate file

number, press RETURN, and the routine finds the file, loads it into memory, and executes the
program. If youdidn’t wantto run a program, thisisindicated with an entry of 2 (for "NO"); the

program then asks "DO YOU WANT TO LIST THEDIRECTORY? (YES=1,NO=2)". Tolist the
directory routine (for example, to update the directory entries), enter 1, press RETURN, and a
listing of the routine will appear. If you enter a 2 (for "NO"), the routine simply terminates.

OUTPUT SAMPLE:

FILE CONTENTS

- o om o o e on o w0 en an @

Name of program in file 2
Name of proaram in file 3

[7X R AV

DO YOU WANT TO RUN A PROGRAM? (YES=1, NO=2) {
WHICH FILE NUMBER 3

FILE CONTENTS

2 Name of program in file 2
K Nawe of program in file 3

DO YOU WANT TO RUN A PROGRAM? (YES=1, ND=2) 2

-

PO YOU WANT TO LIST THE DIRECTORY? (YES=1, NO=2) {

PLOT 50 PROGRAMMING REV A, SEP 1978 3-33

Section 4

ARRAYS

INTRODUCTION

An array is a collection or series of dataitems arranged in some defined pattern. Tax tablesand
bus schedules might be thought of as being arrays. As far as the BASIC interpreter is

concerned, an array consists of a number of locations in memory, each location capable of
being identified by a unique array variable. An array "looks” something like the following:

A(1) A(2) A(B) A(4) A(5) A(6) A7) A8 A(9) A(10)

The namethat has been arbitrarily assigned to this particular array is"A". "A"” contains, in this
case, 10 elements, each possessing its own two-part identifier consisting of the name of the
entire array, which is A, and a subscript enclosed within parentheses. Each element is
referenced by specifying its relative position within the array. Thus, it is possible to refer to
A(1),A(2),and soon. Incidentally, A(1) reads "A sub one”, A(10) reads "A sub ten”, etc. Theten
element array A above is a "one dimensional” array — that is, its elements are stacked
horizontally into one row, but there is no such stacking of elements into vertical columns.

A two-dimensional array (or "matrix") is composed of rows and columns, like the array "B"
below:

3\
Col.1 | Col.2 | Col.3 | Col.4 | Col.5 | Col.6
Row 1 B(1,1) | B(1,2) | B(1,3)
Row 2 | B(2,1) | B(22)
Row 3 | B(3,1) B(3,6) > ®
Row 4 B(4,5) | B(4,6)
Row 5 B(5,4) | B(55) | B(5,6)
L,

As you can see, each element of a two-dimensional array can be identified by a two-part
identifier asisthe case with one-dimensional arrays. The only difference is that the subscript is
composed of two numbers instead of one, and the numbers refer to the row and column,
respectively, in which each element is contained. It is possible, therefore, to refer to each
unique element of a two-dimensional array with a subscript as in B(3,1) or B(5,5) above, or
more genekally,

array (r,c)

PLOT 50 PROGRAMMING REV A, SEP 1978

ARRAYS
INTRODUCTION

where "array” represents a variable, and the subscripts r,c indicate row and column, thereby
specifying the relative position of each element.

At this point, you may be wondering what programming needs are satisfied by arrays. The
answer lies in the fact that programming tasks frequently involve large amounts of data, and
eachitem of datamust be stored inthe memory under avariable name. Recall that the symbols
avaliable for use as variables are restricted to the letters A-Z and A0 through Z9, for a total of
286 variables. This arrangement by itself doesn’'t permit a great deal of data to be stored.

An array, however, can contain aconsiderable amount of data and only requires a single name.
Also, arrays permit convenient ways of referericing each item of data they contain, and BASIC
provides the means to perform operations on entire arrays as though they were numeric
variables. (For example, you can multiply one array by another.)

An array can be subscripted either explicitly (using constants), as in:
B(3)
X1(4,9)

or implicitly (using variables), as in:
C(X)

Y(R,C)
R3((N+2),(M+N))

Implicit subscripts are, of course, restricted to numeric expressions which are evaluated and
rounded to the nearest integer. And, as you can see, the subscripts associated with a two-
dimensional array are separated with commas.

4-2 REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
ALLOCATING MEMORY

ALLOCATING MEMORY
The DIM Statement

Because arrays can be of such widely varying sizes and therefore require varying amounts of
memory, it is necessary to inform the Graphic System that you are going to be using arrays,
and to specify the size of those arrays. This is accomplished through the use of a DIM

statement. DIM is a shortened version of the word dimension. The syntax form is as follows:

[Line number] DIM array variable (numeric expression [, numeric expression])

Any valid numeric variable (A-Z and A0-Z9) may be used as the array variable, except that the
same variable name can not be used as both a "regular” variable and an array variable. The
numeric expressions arerounded to the nearest integer, and represent the number of rows and
columns, respectively, presentin atwo-dimensional array. If you use avariable as a subscript,
as is often the case, the variable must have an assigned value. That is, if you write a statement
like

500 DIM ACM,N)

both M and N must have previously been assigned a value. You can re-dimension an array, but
the total number of elements in the re-dimensioned array must be less than or equal to the
number of elements originally specified.

If you want to allocate space in memory for a one dimensional array "A"” containing 50
locations, a statement to use is: ‘

199 DIM A(S8)

A statement that establishes an array "B"” containing 5 rows and 15 columns is:

150 DIM B(S,13)

More flexible allocation methods can be obtained through the combined use of INPUT or

READ/DATA and DIM. For example, you might know that a particular program is going to
require a one dimensional array to contain some data, but the size is uncertain or is apt to
change from one run to another. The program can be written to include a segment like:

hard copy goes here

308 INPUT N
503 DELETE A
510 DIM A(N)

PLOT 50 PROGRAMMING REV A, SEP 1978 4-3

ARRAYS
ALLOCATING MEMORY

This way, you allocate space at the time you run the program, and the size of the array can be
adjusted to suit the situation. The DELETE statement is included to permit "upward re-
dimensioning.” That is, you might run the program once and dimension A to contain 100
elements, andthenrunit again and dimension Ato contain 250 elements. Bearinginmind that
you can only redimension downward, the solution is to delete the variable entirely from
memory, and then re-allocate a new space. Two-dimensional arrays can, of course, be handled
similarly:

300 PRINT "ENTER NUMBER OF ROWS ";
210 INPUT R

320 PRINT "ENTER MUMBER OF COLUMNS *;
330 INPUT C

348 DIM ACR,C)

If the program is to include READ and DATA statements, then the allocation process is
essentially the same, as in:

500 READ R,C
510 DIM A(R,C)

900 DATA 10,20

In this case, R receives the value of 10, and C receives the value of 20, thereby dimensioning
"A" to be 10 rows and 20 columns.

NOTE

Arrays are limited to two dimensions.

One more thing about allocating memory space: you can dimension several arrays in one
statement. For instance:

348 DIM ACR,C),B(X>,C(13)

4-4 REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
SUBSCRIPTING

SUBSCRIPTING

One Dimensional Arrays

Let's suppose that you have n numbers to sort into descending order. Obviously, you are going
to have to get these numbers into memory, and an array is going to be the best place to store
them. Once the n numbers are stored, there remains the question of how to sort them. A good
place to begin such an exercise is with a flowchart that organizes the method to be used. An
initial attempt at generating this flowchart might yield something like the one shown below.
Closer examination of this initial flowchart, however, suggests that another level of detail must
be added; the program cannot be adequately envisioned from what exists so far. The input and
output program segments can be written usinga FOR/NEXT loop and an INPUT statement for
the "input” step; another FOR/NEXT loop can appear with a PRINT statement to take care of
the "output”step. However, more detail is required to accomplish the processindicated by the
"sort data”step, because the method still remains to be established.

(START)
INPUT DATA
INTO ARRAY.

SORT DATA.

OUTPUT
SORTED
DATA.

(STOP)

PLOT 50 PROGRAMMING REV A, SEP 1978 45

ARRAYS
SUBSCRIPTING

The second flowcharting effort (below) gives sufficient detail to permit writing the program.

The "input” and "“output” steps remain the same, but the "sort data” process has been
expanded considerably.

(START)

INPUT (n)
DATA ITEMS

FLAG <0;
SET UP LOOP
FOR (n —1)
ITERATIONS.

4-6

ITEM
n >=I1TEM
n+1? .

YES

FLAG < 1; SWAP
ITEM (n) WITH

ITEM (n+ 1)

OUTPUT
SORTED
ARRAY

(STOP)

Using a loop, the data is brought into a one-dimensional
array with n elements.

The flag is used to indicate whether or not any out-of-sequence
data has been encountered in the array; the loop is used for
subscripting the array.

Determine if the adjacent pair (items n and n+ 1) are in
correct order. If they are, then bypass the procedure
that swaps them around.

An adjacent pair is found to be in reverse order. Inter-
change them, and set the flag to indicate that a swap
has been made and that more may be necessary.

If the loop (used for subscripting the array variable) has
terminated, then proceed; otherwise, return to the
beginning of the loop.

The loop is done; examine the flag to see if any swaps have
occurred. If some swaps were performed, go back through
the data again because more swaps may be requiréd.

Print out the original data and the sorted data.

REV A, SEP 1978 PLOT 50 PROGRAMMING

(

(

The program, written from the flowchart, is as follows:

106
116
126
130
140
156

166

170
180
198
200
216
220
219
240
250
260
270
280
290
300
310
320

PRINT "HOW MANY DATA ITEMS: ";
INPUT N

DIM ACN)

PRINT "ENTER DATA"
FOR I=1 TO M

PRINT I5", "3
INPUT aCI

HEXT 1

F=0

FOR I=1 TO N-1
éFiﬁ(I>=>ﬁ(I+l) THEN 250
T=A(I)

ACII=ACTI+1)

ACT+L)=T

NEXT I

IF F=1 THEN 180

PRINT

PRINT "SORTED VALUES"
FOR I=1 TO N

PRINT ACID

NEXT I

END

ARRAYS
SUBSCRIPTING

Thearray which containsthe n dataitemsis "A"; allocation of memory for "A” is accomplished
inlines 100—120. The data items which are to be sorted are read into "A” with lines 130—160.
Notice that a FOR/NEXT loop is utilized, and the values that the loop variable ”1" assumes are

used as subscripts in statement 160. This particular FOR/NEXT loop repeats until each
element of "A" is filled.

The variable "F" in statement 180 is the flag which appears in the flowchart; setting it equal to
zero "clears” the flag. The actual data sorting within array "A" is accomplished in the
FOR/NEXT loop statements 190—250.

The operation of the sorting routine relies on the technique of comparing the values of
adjacent pairs. The first time through the loop, item (1) is compared with item (2). If item (1)is
greater than or equal to item (2), then they are left in their current order and program control
passes to statement 250. At statement 250, the loop variable 1" isincremented toits next value,

PLOT 50 PROGRAMMING

REV A, SEP 1978

4-7

ARRAYS

SUBSCRIPTING

andthenextiteration of theloopis executed. If, however, item (1) is less than item (2),item (1)
is placedin atemporary location "T", item (2) is placed in item (1)’s location, and the contents

of the temporary location "T" are placed in item (2)’s location. Pictorially, the process looks
like this:

A(n+1)

| A(n)) N

Also, ifitem (1) is less than item (2), then the flag is set; i.e., "F" is assigned the value of one.
Thisflagis only setif aswapisto be performed. When the flag is set, itindicates that an out-of-
sequence pair has been discovered, and that the entire array "A" has to be éxamined again to
see if anything remains out of sequence. The flag is examined at statement 260; if it is set,
control transfers to line 180. Once control reaches line 180, the flag is cleared, and the whole
sorting procedure is repeated. Eventually, all the data in array "A" is correctly sequenced, the
flag is cleared, and program control reaches statement 270.

Once program control reaches line 270, the output of the program is produced. A FOR/NEXT
loop is again utilized for subscripting, and the output is generated by the PRINT statement
within the body of theloop. When you run the program, it asks you forinput and then produces
output as indicated below.

HOW MANY DATA ITEMS: 19
ETTER DATA

. 23
2, 45
3. 6
4. 7
Y. 96
6. 23
7 43
8. 67
9. 78
18. 8

REV A, SEP 1978 PLOT 50 PROGRAMMING

(

(

-

ARRAYS
SUBSCRIPTING

SORTED VALUES

The important thing to be gained from this exercise is the exposure to some methods of
subscripting arrays. The sorting technique is not a particularly efficient one, and the program
itself can be written with fewer lines. The mainthing s, again, the manipulations that are made
possible by subscripting.

Two Dimensional Arrays

The earlier discussion about one dimensional arrays centered around asorting program. That
program employed a FOR/NEXT looptoinputdatainto an array; data was assignedto the array
location specified by the loop-generated subscript. A similar procedure can be used with two
dimensional arrays. The difference is that two dimensional arrays require two subscripts
instead of one; this suggests that two FOR/NEXT loops are required, one for each subscript.

Toexpand on thisidea, suppose that you have been collecting hourly temperature readings for
aperiod of one week as a part of a project. A reasonable format for this dataisto arrangeitinto
seven rows (one for each day of the week) and twenty-four columns (one for each hourly
reading). This, in turn, suggests a 7 X 24 array:

Hour 1 HOoUr 2 ceceeceteecrcsccoccssssnscnsnnnns Hour 24

Day 1
Day 2

Day 7

PLOT 50 PROGRAMMING REV A, SEP 1978 4-9

ARRAYS

SUBSCRIPTING

4-10

To enter this data into the Graphic System, the first thing to do, of course, is to dimension (or
allocate) the array:

100 DIM T(7,24)

This sets up the seven row, twenty-four column matrix. Now, in order to subscript each element
ofthetemperaturearray "T", two FOR/NEXT loops need to be established. One will run from 1
through 7 (for rows), and the other will run from 1 through 24 (for columns). A nested loop
technique will supply the subscripts. For clarity, the outer loop will use the variable R for rows;

the inner loop will use C for columns. The following program segment, incorporating these

ingredients, stores the data in the array T:

110 FORR=1TO7

120 FORC=1TO 24
130 INPUT T(R,C)
140 NEXT C

150 NEXT R

When the first repetition of the outer loop takes place, R =1 and C = 1, and statement 130
assigns data to T(1,1). Then, while R remains at 1, C goes to 2, and the next data item is
assigned to T(1,2). In this manner, row 1 is filled, then row 2, etc. Finally, each data item is
assignedto an element of the array, and the outer loop terminates. The data are now organized
and stored, and are easily accessible for some further processing.

Incidently, you might have noticed that the subscripts in statement 130 above are arranged so
that the outer loop variable is specified first, followed by the inner loop variable. The result is
that the array is "filled” row-by-row. By reversing the order of these variables within the
subscript, it is possible to reference an array column-by-column. This is shown below, using
"O" as the outer variable, "|" as the inner variable, and a hypothetical 4 X 3 array "H".

500 FORO=1TO3

510 FORI=1TO 4
520 READ H(1,0)
530 NEXT |

540 NEXT 0

REV A, SEP 1978 PLOT 50 PROGRAMMING

(

ARRAYS
SUBSCRIPTING

This program segment causes the variables and subscripts to assume values as tabulated
below, with the indicated effect on the array.

(o] 1 (1,O) Contents of array
1 1 1,1 1 5 9
1 2 2,1 2 6 10
1 3 3,1 3 7 11
1 4 4,1 4 8 12
2 1 1,2
2 2 2,2
2 3 3,2
2 4 4,2
3 1 1,3
3 2 2,3
3 3 3,3
3 4 4,3

Themainthingto be aware of hereis that you can reference an array either column-by-column
or row-by-row, depending on the manner in which the subscripts are arranged.

Brief Examples of Array Operations

The following program segments are included to increase your familiarity with array
operations.

Procedure to sum the elements of a one-dimensional array.

Given:
(1) Array name is A.
(2) A contains N defined elements (each element contains a value).

(3) Sum is to be stored in S.

Procedure:

0

R I=1 TO N
S+ACT)

XT 1

INT "SUM= ;3§

PLOT 50 PROGRAMMING REV A, SEP 1978 4-11

ARRAYS

SUBSCRIPTING

4-12

Procedure to sum the elements of a two-dimensional array.

Given:

(1) Array name is A.

(2) A contains R rows and C columns.
(3) Each element of A is defined.
(

4) Sum is to be stored in S.

Procedure:

oo

8 NEXT
@ PRINT "SUM= “;S

P P s P P P P
AMAWRINN— D

Procedure to sum the elements of a two-dimensional array by row.

Given:
1) Array name is A.
3
4

(1)
(2) A contains R rows and C columns.
(3) Each element of A is defined.

(4)

A one-dimensional array S is allocated with R elements (one for each row of A). Each

element of S has been initialized to zero. The array S contains the sums of the rows in

array A.

Procedure:

168 FOR 1
116 FOR J

=1 TO R
120 S(1)=S

17
1 1T0C
(D+ACT D

150 FOR 1=1 TO K

160 PRINT "“SUM OF ROW "§I3" IS "§S(I)

17@ NEXT 1

REV A, SEP 1978

PLOT 50 PROGRAMMING

ARRAYS
SUBSCRIPTING

Procedure to copy the contents of a two-dimensional array into a one-dimensional array.

Given:
(1) Array name is A.
(2) A contains R rows and C columns.

~ (3) Eachelement of A is defined.

(4) A one-dimensional array B is allocated with (R * C) elements.

Procedure:

P s P P Pl P P
NN BAREWN— O
SOOI
TT@XxXTMTMMX
mm~anooain

Comment: The variable K is used as a counter for subscripting array B.

Procedure to find the mean, standard deviation, sum of the squares, and sum of the

observations of the contents of a one-dimensional array.

Given:

1) Array name is A.

(

(2) A contains N elements.

(3) Each element of A is defined.
(

4) Sum of squares (XX?) is stored in S.

(5) Sum of observations (XX) is stored in S1.

Procedure:
108 S=6
118 S1=6
126 FOR I=1 TO N
136 S=8+A(1)12
146 S1=S1+A(I)
158 NEXT 1|
168 S2=SOR((NXS-5112)/(NX(N-1)))
178 PRINT "STANDARD DEVIATION= *;S2
180 PRINT "SUM OF SQUARES= *;S
198 PRINT "SUM OF OBSERVATIONS= ";Si
200 FRINT "MEAN= "§S1/N

PLOT 50 PROGRAMMING

REV A, SEP 1978

4-13

ARRAYS

OPERATIONS

OPERATIONS

Array Operations

' The procedures which were discussed earlier concerning the input of data into an array and

4-14

the output of datafrom an array were primarily intended to be exercises forthe development of
subscripting concepts. Fortunately, BASIC provides much easier methods of accomplishing
array input/output; also, a number of built-infunctionsthat pertainto arrays areincludedinthe
language. The following paragraphs describe the kinds of array operations that are possible
with the Graphic System. !

Inputting Arrays

Itis possible to input data to an array from the keyboard without having to set up FOR/NEXT
loops to do so. The statement that does this is the conventional INPUT statement:

[Line number] INPUT array variable [, array variable] ...

The only difference between this statement and the INPUT that has appeared in previous
discussionsisthefactthatan array variableisinvolved rather than a numeric variable. In order
tousethe INPUT statement inthis manner, itis necessary tofirstinform the BASIC interpreter
that you are going to be using an array; this, of course, is accomplished through a DIM
statement. Also, itisimportant to know thatthe INPUT statement assigns datato the elements
of a matrix in row-major order (i.e., the first row is filled first, then the second row, etc.).

When the BASIC interpreter encounters an INPUT statement for an array, it generates a
question mark as before, indicating that it is waiting for data entry from the keyboard. A
guestion mark is generated for each element of an array.

As an example, the following statements permit you to input data into a 5 X 10 array:

160 DIM A(S,108)
110 INPUT A

The execution of statement 110 (above) places a question mark on the screen. You then enter
the appropriate data values, separating each value with a comma or a RETURN. (If you use
commas, use a RETURN at the end of the last data value.) Question marks continue to appear
until each element of the array has been assigned a value.

REV A, SEP 1978 PLOT 50 PROGRAMMING

(

ARRAYS
OPERATIONS

Reading Arrays

The READ statement, like INPUT, allows you to fill an array without having to use FOR/NEXT
loops. Again, the specified array is filled in row major order. The main difference, of course, is

that the data’is obtained from aDATA statement instead of from the keyboard. The syntax form
is:

[Line number] READ array variable [, array variable] ...

An example:
160 DIM A(3,4)
110 READ A
500 DATA 1,2,3,4,5,6,7,8,9,10,11,12

This example reads data into array A as follows:

Col. 1 Col. 2 Col. 3 Col. 4
Row 1 1 2 3 4
Row 2 5 6 7 8
Row 3 9 10 11 12

Printing Arrays

As you would expect, this statement prints out the contents of the specified array in row major
order. The syntax form for this statement is:

[Line number] PRINT array variable [, array variable] . ..

Theformat of the outputis depéndent onthescreen’s four printfields. Thatis, an array such as

is printed out on the screen in a spacing arrangement similar to that shown here:

f T |]
A1) A(2) A(3) A(4)

A(b) A(6)

field.1 field 2 field 3 field 4

PLOT 50 PROGRAMMING REV A, SEP 1978 4-15

ARRAYS
OPERATIONS

A PRINT statement pertaining to arrays and ending with a semicolon behaves like a
conventional PRINT ending with a semicolon: each element of the array is printed exactly as it
is represented internally, including the leading blank.

Array Assignments

Matrix assignment statements can assume a number of different forms, according to the type
of operation taking place. All the forms have included within them the assignment operator
("equals” sign), hence the term "Matrix assignments”. The various aspects of matrix
assignments are discussed in the following paragraphs.

An array assignment statement can be used to make a copy of an existing array, using the
form:

[Line number] [LET] array variable = array variable

For example, given that B is a previously defined array, the statement
109 LET A=B

copies Binto A. Remember that the "=" signisthe assignment operator, and the statement can
be read "matrix A receives matrix B"”. Matrix B remains unchanged. Matrix A must have been
previously given dimensions equal to those of B.

You can also initialize all the elements of an array to one value, using the form

[Line number] [LET] array variable = numeric expression

This means that you can write statements like

180 LET A=9
118 LET B=4xX12

Array Arithmetic

Elementary array arithmetic can be accomplished using the form:

array variable

[Line number] [LET] array variable = array variable numeric expression

4-16 REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
OPERATIONS

Adding Arrays

Array addition performs element-by-element summations. For example, the statement
199 LET A=B+C

sums each element of B with each element of C and places the resultin A. You can also write
statements like the following:

180 LET A=A+B
110 LET A=A+4
12¢ LET A=B+(33X12)

where A and B are identically dimensioned arrays.

Subtracting Arrays

The array subtraction statement takes a form similar to that used with array addition, the only
difference being the operator that is used. To illustrate,
100 LET A=B-C

subtracts each element of C from each element of B, and assigns the resultto A. A, B, and C
must be identically dimensioned. As was the case with array addition, you can also say:

190 LET A=A-B

This causes each element of B to be subtracted from each element of A; the resultant difference
will reside in A. Also allowed are statements like:

108 LET A=B-4

which subtracts 4 from each element in B and assigns the result to A and, similarly,
100 LET A=A-SOR(X)

which subtracts the square root of the numeric variable X from each element of A.

Multiplying Arrays

Array multiplication is similar to array addition and subtraction. That is, you can say
109 LET A=BxC

and you can also write

100 LET A=A%B

PLOT 50 PROGRAMMING REV A, SEP 1978 4-17

ARRAYS

OPERATIONS

4-18

Dividing Arrays

Array division is accomplished with a format similar to array addition, subtraction, and
multiplication, and is also performed element-by-element.

Summing an Array
It is convenient to sum the elements of an array with the following function:
SUM array variable

The SUM function returns a value which is equal to the sum of all the elements of the specified
array. The function can be used in numeric expressions just like SIN, COS, etc.

REV A, SEP 1978 - PLOT 50 PROGRAMMING

ARRAYS
MATRIX FUNCTIONS

MATRIX FUNCTIONS

NOTE

In order to perform the matrix functions a 4051 Graphic System must be equipped
with a Matrix Functions ROM Pack.

The DET Function

The DET function returns the value of the determinant:

[Line number] array variable = INV array variable

[[Line number] numeric variable =]DET

NOTE

As indicated in the syntax form above, the INV function must be performed in order
to use the DET function. The value of the determinant is computed during the INV

process. For this reason, it is important to understand the INV function before
attempting to use DET.

The determinant of a matrix is a function of the elements in the matrix. The value of the
determinant is a numeric constant, and can be computed for any square matrix.

NOTE
The following discussion is provided to illustrate what the determinant of amatrix is,

by showing one method of computing its value by hand. This is not an explanation of
the algorithm the DET function uses to compute the value of the determinant.

The value of the determinant is a numeric constant, and can be computed by hand from the
elements of the array. For example:

12
= , DET=-2
A [3 4]

PLOT 50 PROGRAMMING REV A, SEP 1978 4-19

ARRAYS

MATRIX FUNCTIONS

4-20

For a 2x2 matrix as in this example, the value of the determinant is the product of the diagonal
elements in the upper-left and lower-right corners, minus the product of the elements on the
other diagonal: ‘

DET = 1%#4 — 3%2 = —2
Computing the determinant of a 3x3 matrix by hand is a little harder.

For example:

-3 1 2

A= 6 0 3|, DET=-15
2-1 0

One way to begin the calculation is to "expand” along the first row as follows: multiply each

element along the first row by the determinant of the matrix found by covering up the row and

column containing that particular element. For instance, multiply the element A(1,1) by the
determinant of the matrix found by covering up the first row and first column of A:

—3*[0*%0— (—1)*3] =—9

Notice that the determinant of the 2x2 matrix |: 0 3} is obtained by the method described
in the first example, that is 0% 0 — (—1) *3=3.|_

Next, multiply the element A(1,2) by the determinant of the matrix found by covering up the
first row and second column of A:

1*[6-0—2*%3] =—6

Finally, multiply A(1,3) by the determinant of the matrix found by covering up the first row and
third column of A:

2% [6*—1 —2%0] = —12

Three numbers are obtained in this way, —9, —6, and —12. The value of the determinant of A is
the first number, minus the second number, plus the third number:

DET =946 —12=—15

REV A, SEP 1978 PLOT 50 PROGRAMMING

(

(

(

ARRAYS
MATRIX FUNCTIONS

The same method can be usedto findthe determinant when Ais alarger matrix. Each element
along the first row of A is multipled by the determinant of the matrix found by covering up the
row and column containing that element. The value of the determinant of A is equal to the first
number, minus the second number, plusthe third number, minus the fourth number, and so on.

The computations are tedious for matrices having more than three rows and three columns.
For example, take A to be the 5x5 matrix shown below:

, DET=-43

>

Il
D= D=
- - o wu o
oNn = oo
O~ o000 Ww
o W= oA

The first step in computing the determinant is to multiply A(1,1) by the determinant of the
matrix found by covering up the first row and first column of A:

Now to compute the value of the determinant of the 4x4 matrix shaded above, begin by
multiplying the first element in its first row by the determinant of a 3x3 matrix:

This process continues until all of the required "subdeterminants” have been reduced to a
numeric value. Notice that each elementin the first row of matrix A must be multiplied by a 4x4
determinant, whose value must be reduced to a numeric constant by performing the necessary
expansions on 3x3 matrices, and so on.

Itis easy to seethe advantage of using the DET function to compute the determinant of such a
matrix; the DET function calculates the value of the determinantin afraction of the time it takes
to complete the calculation by hand.

PLOT 50 PROGRAMMING REV A, SEP 1978 4-21

ARRAYS

MATRIX FUNCTIONS

4-22

The DET function returns the determinant of the square part of amatrix which has been used as
a parameter for the INV function. For example:

0 _ _ 2 -1 3 _
}, B = INV(A) = [*1 1_3} , DET =1

Asindicated above, afterthe INV functionis performed on matrix A, the DET functionis used to
compute the determinant of the square part (the shaded portion) of A.

The DET functionis always performed after the matrix has been suppliedto the INV function: in
other words, the INV function is performed first, then the DET function.

As an example, the following sequence of statements may be usedtofind the determinant of a
5x5 matrix:

DEL A,B

DIM A(5,5),B(5,5)
INPUT A

B = INV(A)

DET

Notice that the statement B = INV(A) is executed before the statement DET.

The DET function does not necessarily have to be performed immediately after the INV
function. No matter how many BASIC statements have been executed since the last use of the
INV function, the DET function always returns the determinant of the square part of the matrix
most recently supplied to the INV function. '

When executing statements directly from the keyboard, the value of the determinant may be
obtained by entering DET and pressing the RETURN key. When the DET function appearsina
BASIC program, the value of the determinant may be obtained from a statement such as 100
PRINTDET. (A statement suchas 100 DET resultsin an error.) In either case, the INV function
must be performed on the matrix before performing the DET function.

Thefollowing program illustrates how the DET function can be used to find the determinant of
the square part of a matrix:

100 DEL A,B

110 DIM A(2,3),B(2,3)
120 READ A

130 DATA 1,1,0, 1,2,—3
140 B = INV(A)

150 PRINT "A =":A;

160 PRINT "DET=";DET

REV A, SEP 1978 PLOT 50 PROGRAMMING

N

m

ARRAYS
MATRIX FUNCTIONS

This program computes the determinant of the square part (the shaded portion) of the
following matrix:

The INV function is performed on matrix Ainline 140, and the DET functionis usedin line 160.
When line 160 is executed, the value of the determinant appears on the display:

DET = 1

Theimportantthing to keepinmindisthatthe INV functionis always performed first, thenthe
DET function.

The DET function always returns the determinant of the square part of the matrix most recently
supplied to the INV function. This means that as soon as the INV function is performed on a
new matrix, the result of the DET function changes.

To store the value of the determinant for later use, the result of the DET function may be
assigned to a numeric variable in a statement such as X = DET or 100 X = DET. The numeric
variable is called the target variable because it serves as a "target” for the value of the
determinant.

It is important to keep in mind that the result of the DET function is a numeric constant, and
should be assigned to a numeric variable (that is, a variable which has not previously appeared

in a DIM statement). Thus, the target variable should not have the same name as an array. For
example, if the INV function is performed on a 3x3 matrix named A, the assignment A = DET

replaces all nine elements of A by the numeric constant resulting from the DET function.

NOTE

The DET function always returns the determinant of the square part of the matrix
most recently supplied to the INV function. Forgetting to perform the INV function
before the DET function may result in an incorrect answer. For example, when
finding the determinant of a matrix called B, if DET is performed before INV(B), the
answer which appears on the display is not the determinant of matrix B; it is the
determinant of whatever matrix was last supplied to the INV function.

PLOT 50 PROGRAMMING REV A, SEP 1978 4-23

ARRAYS

MATRIX FUNCTIONS

4-24

The IDN Routine

The IDN function creates a matrix whose elements are 1’s along the major diagonal, and 0’s

[Line Number] CALL "IDN" , array variable

For example, the IDN function may be used to geherate the following 3x3 matrix:

100
| = 010
001

1(1,1),1(2,2),and I(3,3) arethe diagonal elements of matrix |, and have been assigned the value
1. All other elements are 0’s.

When the IDN functionis usedto generate asquare matrix as in the above example, the result is
called an identity matrix. In this example, matrix | is the 3x3 identity matrix.

The result of the IDN function is assigned to an array variable, called the target variable. The
result of the IDN function always has the same dimensions as the target variable. For instance,
if listo be thetarget for the result of the IDN function, and is dimensioned in a DIM statementto
be a 5x5 matrix, performing the IDN function results in the 5x5 identity matrix shown here:

10000
01000
I = 00100
00010
000O01

A matrix does not have to have a square shapeto be used as thetarget for the IDN function. The
IDN function assigns valuesto the elements of a non-square array |, just as it did to the square
matrices in the preceding examples: diagonal elements (elements 1(1,1),1(2,2),...,1(iX,K)) are
assigned the value 1, and all other elements are assigned the value 0.

For example, when | is dimensioned to be a 3x5 array, performing the IDN function results in
the following matrix:

Notethatthe diagonal elementsi(1,1),1(2,2),and I(3,3), are all 1's, and the rest of the elements
are 0’s. Also, the last two columns of the matrix have O’'s assigned to every element.

o O =
o =+ O
- O O
o O O
o O O

REV A, SEP 1978 PLOT 50 PROGRAMMING

(

ARRAYS
MATRIX FUNCTIONS

Whenthetarget variable is dimensioned to be a non-square matrix, the IDN function produces
a matrix having at least one row or column filled with 0’s. The rows or columns of Q’s are the
ones which lie outside the square part of the matrix. (The square part of a matrix is the largest
square portion of the matrix which includes the upper-left corner.) For example, let matrix | be
dimensioned as a 6x3 array:

110 DIM 1(6,3)

When the IDN function is performed, matrix | is assigned the following values:

The shaded areashown above isthe square part of matrix | becauseitisthe largest squarethat
can be blocked off, starting in the upper-left corner. Notice that the square part is the 3x3
identity matrix, and all elements outside the square part are O’s.

When the target variable has a non-square shape, the result of the IDN function resembles an
identity matrix (the square partis anidentity matrix). But because of the extra rows or columns
of 0’s, the non-square matrix does not have the properties of an identity matrix.

Before performing the IDN function, atarget variable must be dimensioned in a DIM statement,
using two subscripts to indicate the number of rows and columns in the result matrix. For
instance, if variable Aistoreceive the result of the DIM function, and the function is bei ng used
to generate the 3x3 identity matrix, A must be dimensioned as follows:

DIM A(3,3)

Using only one subscript to dimension the target variable causes an error to occur when the
IDN function is performed.

Any valid numeric variable name may be used as the target for the result of the IDN function. An
array can serve as the target for the IDN function without having numeric values assigned to
eachelement. The only requirement for the target variable is that it be previously dimensioned
in a DIM statement, using two subscripts to indicate the number of rows and columns in the
result matrix.

An array variable name which has numeric values assigned to each element may also be used
as the target variable. However, the result of the IDN function replaces all previously assigned
values.

PLOT 50 PROGRAMMING REV A, SEP 1978 v 4-25

ARRAYS

MATRIX FUNCTIONS

4-26

The following program illustrates how the IDN function is used to create the 4x4 identity
matrix:

100 DELETE |
110 DIM 1(4,4)
120 CALL "IDN", |
130 PRINT "I = "1

Only four statements are needed to form the identity matrix and display the result. Inline 110,
thevariablelis dimensionedto be asquare matrix having four rows and four columns. Matrix |
is to be used as the target for the result of the IDN function, and must be previously
dimensionedin aDIM statement, or an error occurs. When the IDN functionis performedinline
120, matrix | becomesthe 4x4 identity matrix; 1’s are assigned to the diagonal elements of |, and
O’s are assigned to all other elements. When line 130 is executed, the result appears on the
display as follows:

1000
| = 0100
0010
0001

Matrix | is now the 4x4 identity matrix.

The dimensions of matrix | may be changed in order to make an identity matrix of a different
size. For example, the following program creates the 6x6 identity matrix:

100 DELETE |
110 DIM 1(6,6)
120 CALL "IDN",I
130 PRINT "1=";1

Line 110 contains the only difference between this program and the program that was used to
make the 4x4 identity matrix. The DIM statementinline 110 determines which identity matrix is
generated by the program. Here, | isdimensioned to be a6x6 array, sothe program makes the
6x6 identity matrix shown below:

P ey

O OO O O =
O OO o =+ 0
O OO0 -+ OO0
O O -2+ O0O0
o 2+ OO 0O o
- O OO OO

REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
MATRIX FUNCTIONS

Properties of Identity Matrices
Multiplying by an Identity Matrix

When a square matrix is multiplied by the identity matrix of the same size, the result is the
original matrix. That is, the following is true for any square matrix A:

AMPY |=IMPYA=A

In this expression, MPY is matrix multiplication and | is the identity matrix having the same
dimensions as A.

For example, let A be a 2x2 matrix and | be the 2x2 identity matrix as shown below:

- B)

Multiplying A by | (or | by A) result in the same matrix A:

v [23] 39 - [24] -+
s (30) - [24]-+

(Refer to the matrix function MPY for how to perform these caluclations.)

Theaboveruleonly holdswhen Aissquare and | isthe identity matrix of the same size as A. If |
is a non-square matrix generated by performing the IDN function on a non-square target
variable |, then itis not true that AMPY | =1 MPY A= A. Instead, the product of A and | (or of |

and A) may return amatrix which resembles A, but has chopped off part of A, or added rows or
columns of 0’s to A.

When an ldentity Matrix is the Result of Matrix Mulitplication

One matrixistheinverse of another matrix if their product results in an identity matrix. In other
words, matrix B is the inverse of matrix A if the following is true:

A MPY B=B MPY A=

PLOT 50 PROGRAMMING REV A, SEP 1978 4-27

ARRAYS
MATRIX FUNCTIONS

In this expression, MPY is matrix multiplication and | is the identity matrix having the same
dimensions as A and B. A and B must both be square matrices.

As an example, let A and B be the 2x2 matrices shown below:
. 4 3 . -2 3
A= [3 2] B = [3 —4}

The products A MPY B and B MPY A both result in the 2x2 identity matrix. This can be verified
by performing the MPY function on A and B:

B B 437 2 3 _[10
C=AMPYB= [3 2} [3—4] _[01]
B B -2 37114387 _[10
D=BMPYA-= [3 _4] [3 2] = [0 1]

(Refer to MPY for an explanation of how to compute these products.) Since both AMPY B and
B MPY A result in the 2x2 identity matrix, A is the inverse of B.

4-28 REV A, SEP 1978 PLOT 50 PROGRAMMING

_ ARRAYS
MATRIX FUNCTIONS

The INV Function

The INV function returns the inverse of a matrix, and solves system of linear equations:

[Line number] array variable = INV array variable

Thefunction returns a new matrix which hasthe same size and shape asthe original array. The
square part of the new matrix is the inverse of the square part of the original matrix, and any
columns which lie outside the square part in the new matrix, represent solutions to sets of
linear equations. A detailed explanation of what this means is given later. Meanwhile, an
example is given to illustrate what the INV function does:

2314 _ [2-3-7 8
A= [1230] - BEINVIA)= [~1 2 5—4]

Notice that when the 2x4 matrix Ais supplied to the INV function, the result B=INV(A) isalso a
2x4 matrix.

The Square Part

The square part of matrix B is the inverse of the square part of matrix A. The square parts of A
and B are the shaded portions shown below:

The shaded portionin each matrixis calledthe square part becauseitisthe largest square that
can be blocked off, starting in the upper left-hand corner of the matrix.

The shaded portion in B=INV(A) is the inverse of the shaded portion in A:

is the inverse of

Saying that one matrix is the inverse of another means that when the two are multiplied, the
resultis anidentity matrix. (Refertothe IDN Function topic "Properties of Identity Matrices".)

PLOT 50 PROGRAMMING REV A, SEP 1978 4-29

ARRAYS

MATRIX FUNCTIONS

4-30

The Extra Columns

Inthe previous example, both matrices A and B have two columns which lie outside the square
part. The extra columns are shown below:

The two extra columns in B represent solutions to two different sets of linear equations. The
first set of equations is

2x + 3y =1

x+2y=3

and the first extra column in B represents the solution x =—7 and y = 5. The second set of
equations is

2x + 3y =4
x+2y=0
and the second extra column in B represents the solution x = 8 and y = —4.

The coefficients of x and y are the same for both sets of linear equations, and can be found in
the square part of matrix A:

The constants which appear tothe right of the equal sign in the first set of equations, appear in
the first column to the right of the square part in A:

Likewise, the constants which appear in the second set of equations, are found in the second
column to the right of the square part in A:

23
A =
%3

The solution for the first set of equations is found in the first column to the right of the square
part in B:

2_

B = INV(A) = [_1

The solution for the second set of equations is found in the second column to the right of the
square part in B:

2 —3 -7

- INV(A) = [—1 2 5

REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
MATRIX FUNCTIONS

In summary, each extra column in B=INV(A); represents the solution to a set of equations
which uses the elements of the square part in A for the coefficients of x and y. For every extra
column in B, there is a corresponding extra column in A which contains the constants that
appear to the right in the set of equations. Fig. 2-1 summarizes the information obtained from
this example.

NOTE

Forthose who are accustomedto representing systems of linear equations in matrix
form, it may be more convenient to express the equations and solutions as follows:

First System of Equations Solution
INEN

12 y 3

Second System of Equations

M

I

MEW

MR

Itmay betempting inthis example tothink of matrix A as representing the following
system of linear equations:

2x+3y+ z=4
x+2y+3z=0

This is not a correct interpretation. The INV function always solves systems of N
equations in N unknowns, where N stands for the number of rows in the parameter
matrix. Since there are two rows in matrix A above, INV(A) provides solutions to
systems of two equations in two unknowns (x and y).

Whenthe INV function is performed on a square matrix, the resultis the inverse of the original
matrix. For example:

102 3 2 -6
A= |-130 |, B=INV(A) = 11 =2
011 -1 -1 3

The shaded portions shown above are the square parts of matrices A and B. Notice that the
square part of A is the entire matrix A, and the square part of B is all of matrix B.

PLOT 50 PROGRAMMING REV A, SEP 1978 4-31

ARRAYS
MATRIX FUNCTIONS

When the INV function is performed, the square part of the result is the inverse of the square
part of the original matrix. This means that for this example, matrix Bis theinverse of matrix A.

When the INV function is performed, extra columns in the result represent solutions to sets of
linear equations. Butin this example, there are no extra columnstothe right of the square part
of A or B, so the result does not provide solutions to sets of linear equations.

To summarize, when the INV function is performed, the square part of the result is the inverse
ofthe square part of the original matrix, and any remaining columns represent solutions to sets
of linear equations. When the matrix suppliedtothe INV function has asquare shape, there are
no extra columns, and the resulting matrix is the inverse of the original matrix.

The parameter of the INV function must be a matrix having at least as many columns as rows.
For example, the INV function can be performed on the following matrices:

[12] [123:' [1230

Ifamatrix isto be used as a parameter for the INV function, it must previously be dimensioned
in a DIM statement, using two subscripts to indicate the number of rows and columns. For
example, the statement DIM A(3,4) dimensions a matrix which may be usedasa parameter for
the INV function.

Since the matrix must have at least as many columns as rows, the second subscript used to
dimension the parameter must be greater than or equal to the first subscript, or an error will
occur. For example, if matrix A is dimensioned to be a 4x3 matrix in the statement DIM A(4,3)
attempting to perform INV(A) results in an error.

When the INV function is performed, a new matrix is generated which has the same size and
shape as the original matrix. The new matrix must be assigned to a target variable. The target
variable must be dimensionedin a DIM statement, using two subscriptstoindicatethe number
of rows and columns. Sincethe new matrix has the same size and shape asthe original matrix,
the subscripts used to dimension the target variable must be the same as those used to
dimension the parameter variable.

The target variable may have the same name as the parameter variable. For example, the
following statement can be used:

A = INV(A)

However, when the statement is executed, the original matrix A is replaced by the new matrix
generated by the INV function. Care should be taken not to allow the original matrix A to be
overwritten in this way, if Aisto be used in later calculations. In general, it is good practice to
use different names for the target variable and the parameter variable.

4-32 REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
MATRIX FUNCTIONS

If a matrix has been overwritten by the result of the INV function, the original matrix may be
recovered by performing the INV function again; however, truncation may occur during the
calculations, causing the answer to be different from the original matrix. How closely the
answerresemblesthe original matrix depends upon the "sensitivity” of the parameter matrix. A
matrix is called "sensitive” if the values assigned to its elements make the matrix more
susceptible to the truncation errors that normally occur when arithmetic operations are
performed.

Matrices which are very sensitive to truncation error during the INV process are called "ill-
conditioned” with respect to inversion. For discussion of truncation and the condition of a
matrix, refer to the Supplementary Information at the end of this section.

The following program illustrates how the INV function may be used to invert a matrix and
solve a set of linear equations:

100 DEL A,B
110 DIM A(3,4),B(3,4)

120 READ A

130 DATA 1,0,1,0,2,—1,-2,3,—2,1,1,0
140 B = INV(A)

150 PRINT "B = INV A =";B

This program performs the INV function for the following 3x4 matrix:

1 0 1 0
A= 2 -1 -2 3
-2 1 1 0
Line 140 computes INV(A) and assigns the result to the target variable B. When line 150 is
executed, the result appears on the display:

11 1 3
B = INV(A) = 2 3 4 9:|
0—-1-1-3

The square part of the resulting matrix B is the inverse of the square part of the original

matrix A:
11 1 1 0 1
2 3 4 is the inverse of 2 —1 —2
0 -1 —1 2 1 1

PLOT 50 PROGRAMMING REV A, SEP 1978 4-33

ARRAYS
MATRIX FUNCTIONS

The fourth column of matrix B represents the solution for the set of linear equations shown

below:
X +z =0
2x -y —2z =
—2X +y +z =0

The coefficients of x, y and zin the equations are the elements found in the square part of A,
and the constants which appear on the right hand side of the equations are found in the last
column of A.

The solution to the set of equations is represented by the last column of matrix B, as follows:

x= 3
y= 9
z=—3

The INV function can only be successfully performed when the square part of the parameter
matrix has aninverse. Not every square matrix has an inverse. For instance, the matrix C shown
below does not have an inverse:

o{37]

When the INV function is unable to compute an answer because the square part of the
parameter matrix has noinverse, an INVALID FUNCTION ARGUMENT error message appears
on the display. For instance, attempting to perform the INV function results in an error for any
of the matrices shown below:

For each of these matrices, the square part (the shaded portion) is the 2x2 matrix C from the
last example. Since C does not have an inverse, attempting to perform the INV function on any
of the above matrices results in an INVALID FUNCTION ARGUMENT error message.
However, if the error results while a program is executing, the BASIC interpreter behaves asif a
SIZE ERROR has occurred, so that ON SIZE THEN... statement may be used to handle the
error without terminating program execution.

When an ON SIZE THEN... statement is executed in a BASIC program, subsequent SIZE
ERRORs do not halt program execution; instead, control is diverted to the line number
specified in the ON SIZE THEN... statement. (Refer to Section 7 for an explanation of ON...
THEN... statements.)

4-34 REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
MATRIX FUNCTIONS

The following program illustrates how the ON SIZE THEN... statement may be used to avoid a
SIZE ERROR:

100 ON SIZE THEN 220

110 DELETE A,B

120 DIM A(3,4),B(3,4)

130 PRINT "DO YOU WISH TO PERFORM THE INV FUNCTION?"

140 PRINT "IF SO, TYPE '1"; IF NOT, TYPE '0"."

150 INPUT T

160 IF T=0 THEN 250

170 PRINT "ENTER THE ELEMENTS OF A 3X4 MATRIX, IN ROW ORDER:"

180 INPUT A

190 B = INV (A)

200 PRINT " B =INV (A)=";B

210 GO TO 130

220 PRINT "THE VALUE OF THE DERMINANT IS";DET

230 PRINT "THE SQUARE PART OF THE MATRIX HAS NO INVERSE."”

240 GO TO 130

250 END

This program performs the INV function on 3x4 matrices. The statement ON SIZE THEN 220

alerts the system to the possiblity of a SIZE ERROR occurring at execution time. If a SIZE
ERROR occurswhilethe program isrunning, control istransferred toline 220. Amessage then
appears on the display, explaining that since the square part of the parameter has no inverse,
the INV function cannot be performed. In this way, a SIZE ERROR has been avoided, and the
program continues to ask for more data.

Systems of Equations With No Solution

Whenthe square part of the parameter matrix has noinverse and attemptingto perform the INV
function results in an error, the equations represented by the matrix have no solution.

For example, the square part (the shaded portion) of the matrix shown below has no inverse,
and attempting to perform the INV function results in an INVALID FUNCTION ARGUMENT
error:

Matrix C represents the following set of two equations in two unknowns:
X +2y =1
3x +6y =9

Since no solution exists for the above equations, it makes sense that the INV function resultsin
an error.

As another example, suppose you need to solve the following equations:

y +4z =1
—X +3z =0
2x +y —2z =1

PLOT 50 PROGRAMMING REV A, SEP 1978 4-35

ARRAYS
MATRIX FUNCTIONS

The first step is to represent the equations by a matrix:

0 1 4 1
D=]-1 0 3 0
2 1 -2 1

The next step is to perform the INV function on matrix D, in order to obtain a new 3x4 matrix
whose fourth column represents the solution for the set of equations.

However, the square part of matrix D has noinverse, and the INV function returns an INVALID
FUNCTION ARGUMENT error. The INV function is unable to solve the equations.

As inthe previous example, it makes sense that the INV function cannot coq&jpute an answer,
because no solution exists for the three equations. Whenthe INV functionis unable

to compute an answer because the matrix has no inverse, the system of linear

equations has no solution (or does not have a unique solution).

Attempting to performthe INV function on a matrix which has morethan 255 rows or more than
255 columns causes a SHAPE ERROR.

Supplementary Information

The following paragraphs provide supplementary information about the suitability of certain
matrices for inversion and computation of the determinant. The “condition” of a matrix is a
very complicated topic, and cannot be fully explained in a few pages. The information is
presented as concisely as possible, and is intended only to help you understand how the
properties of a particular matrix may affect the results of the INV and DET functions.

Mathematical Invertibility Versus Numerical Invertibility

In mathematical theory, a matrix either has an inverse or does not have an inverse. If a matrix

has no inverse, the value of the determinant is zero, and the matrix equation A MPY X =B has
no solution (or cannot be uniquely solved). But if a matrix has an inverse, the determinant is
non-zero, and A MPY X = B may be solved for any B.

In practice, however, a matrix is called non-invertible when the sequence of arithmetic
operations used to compute the inverse reaches a point past which the calculations cannot
proceed further. This definition is not the same as the mathematical definition of invertibility.
Many matrices are invertible in the mathematical sense, but not in the computational sense.
For instance, the following matrix is mathematically invertible, but the inverse cannot
necessarily be computed if € is much smaller than 1:

1—¢ 1+ ¢
A= [1 1+2£:'

4-36 REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
MATRIX FUNCTIONS

Although theoretically an inverse exists for this matrix, most machines are unable to compute
an answer.

Conversely, a mathematically non-invertible matrix may be "inverted” on most machines
without causing an error. For example:

a 1
B:
l:aT2 a:|

Intheory, this matrix has noinverse, yetin practice most algorithms used to compute inverses
return an answer if 1/a cannot be represented with complete precision (a=3 is an example of
this).

Truncation Error

Truncationisthereasonforthe difference between what should theoretically happen and what
actually happens when a machineis usedto calculate aninverse. Truncation can occur within
any machine while arithmetic operations are being performed, and while numbers are being
converted from decimal to binary representations. Whenever a binary number has more bits
than the machine can represent, the extra bits are chopped off (truncated). Truncation is
unavoidable, since there are many numbers which cannot be represented with complete
precision on any machine.

When a sequence of arithmetic operations is performed, some truncation usually occurs. The
total amount of error depends on the numbers involved in the calculations. For matrix
inversion, the numbers involved are the values assigned to the elements of the matrix, and the
"condition” of a matrix is an indication of how these values influence the total amount of
truncation error.

The Condition of a Matrix

A matrix C is called "ill-conditioned” with respect to inversion when small changes in the
elements of C cause large changes in the computed inverse of C, or cause C to be non-
invertible ina computational sense. It may not be worth attempting to compute theinverse of a
very ill-conditioned matrix, because small errorsinthe original data (the values assigned to the
elements of the matrix) can cause the computed answer to be unrecognizably different from
the true inverse of the matrix. lll-conditioned matrices also tend to be more susceptible to
truncation error than other matrices.

PLOT 50 PROGRAMMING REV A, SEP 1978 4-37

ARRAYS

MATRIX FUNCTIONS

4-38

A matrix which is ill-conditioned with respect to inversion is more susceptible to truncation
error in the sense that as arithmetic operations proceed to compute the inverse, truncation
error tends to accumulate faster than it would for better-conditioned matrices. Normal
amounts of truncation error do "pile up” even for well-conditioned matrices, just because so
many computations are needed to invert a matrix, and every step in the process provides
another chance for error to occur. (Thus large matrices are more susceptible to truncation
error than small ones.) Yet when an ill-conditioned matrix is inverted, much more than the

normal amount of truncation error may accumulate, causing the result to be too inaccurate to
be called an inverse at all.

The most extreme example of thisis a non-invertible matrix, thatis, one which has noinversein
the mathematical sense. This type of matrix is the worst case of ill-conditioning with respect to
inversion, and if the algorithm used to compute the inverse is able to return an answer, the
answer is completely inaccurate. So much truncation error has accumulated during the

calculations that the machine appears to have found an inverse, when actually no inverse
exists. |

The condition of amatrix with respect to inversion can be measured, and the measure is called
the condition number k. For any matrix C, the condition number may be,calculated as follows:

k =| largest element of C * largest element of INV(C) |

If kis close to 1, matrix C is well-conditioned with respect to inversion. However, if kis much
larger than 1, Cis less well-conditioned; and if k is extremely large, C is called ill-conditioned,
and the computed inverse of C is likely to be very far from the true inverse of C.

The number 1/k is a rough measure of the "distance” from matrix C to the nearest
mathematically non-invertible matrix. For instance, if the condition number kis 10"°, C may be

made non-invertible by increasing or decreasing at least one of its elements by about 107"
times the largest element in the matrix.

Evaluating the Result of the INV Function. The condition number may be used as a check of the
accuracy of the result of the INV function. If the distance 1/k from C to the closest non-
invertible matrix is comparable in magnitude to possible errorsin the data (the values assigned
to the matrix), the result of performing the INV function may be so inaccurate that INV(C) is
meaningless. For example, if the values assigned to the elements of matrix C are physical
observations which are only accurate to three places, a condition number k of 10’ or higher
indicates that the result of INV(C) may be too inaccurate to be meaningful. Likewise, if the
distance 1/k from C to the closest non-invertible matrix is comparable in magnitude to the
precision of the machine, 107", the result of INV(C) may be too inaccurate to be of any practical
value. This means that if the condition number kis 10"°, the distance from C to the closest non-
invertible matrix is roughtly 107", which is the same as the amount of error which might
normally occur during any arithmetic operation such as addition or subtraction. In general, if
the condition number k is 10"° or larger, the matrix may be so ill-conditioned with respect to
inversion that the INV function cannot be expected to compute a meaningful result.

REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
MATRIX FUNCTIONS

Evaluating the Result of the DET Function. The value of the determinant is computed during

the INV process. For this reason, the result of the DET function is affected by the condition of
the matrix in the same manner as the INV function. When the result of the INV function is
inaccurate because the parameter matrixisill-conditioned with respect toinversion, the value
returned by the DET function is not likely to be close to the true value of the determinant.

Thus, if the values assigned to the elements of the matrix are based on physical observations,
1/k should not be smaller than possible errors in the original data. Likewise, a condition
number k greater than or equal to 10" indicates that the parameter matrix is so sensitive to
truncation error that the result of the DET function may be very different from thetrue value of
the determinant.

This means that the value returned by the DET function cannot be used as an indication of
whether or not a matrix is invertible. In mathematical theory, a matrix has no inverse when the
value of the determinant is O; but in practice, if the parameter matrix is non-invertible or ill-
conditioned with respecttoinversion, the value returned by the DET function may not even be
close to 0.

Suppose you want to use the INV function to find the inverse of the following 3x3 matrix:

1 0 1
R=1]12-15
3 -1 6

Performing INV(R) results in the following matrix:

6.251999482E+13 6.254999482E+13 —6.254999482E+13
S=INV(R) = | —1.876499845E+14 —1.876499845E+14 1.876499845E+14
—6.254999482E+13 —6.254999482E+13 6.254999482E+13

Since performingthe INV function does not resultin an error, you might be tempted to accept
matrix S as the inverse of matrix R, without checking the accuracy of the result S.

PLOT 50 PROGRAMMING REV A, SEP 1978 4-39

ARRAYS

MATRIX FUNCTIONS

4-40

But a check of the condition number k reveals that matrix R is extremely ill-conditioned with
respect to inversion:

k =| largest element of R # largest element of S |
= R(3,3)%S(2,3)
= 1.125899907 E+15

The condition number k is so large, and R is so ill-conditioned with respect to invevrsion, that
the INV function cannot be expected to return an accurate inverse.

Since the size of the condition number indicates that R may not be accurately inverted, itis a
good idea to check the result by performing R MPY S and S MPY R. How accurate the result
returned by the INV function is, depends on how closely the elements of the products resemble
those of the 3x3 identity matrix.

The products R MPY S and S MPY R are shown below:

100 3 05 2
M=RMPYS=|020|{, N=SMPYR=|-6 2 -8
220 -2 05 —2

Neither product resembles the 3x3 identity matrix, confirming that matrix R is too ill-
conditioned to be accurately inverted.

In general, after using the INV function to invert a matrix and solve systems of linear equations
or after performing the DET function, itis useful to check the condition number k. An extremely
large condition numberindicates that the parameter matrix is not suitable for matrixinversion
or computation of the determinant, and that the results of the INV and DET functions should
not be assumed to be accurate.

REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS

MATRIX FUNCTIONS

The MPY Function

The MPY function returns the matrix product of two arrays:

[Line number] array variable = array variable MPY array variable

For example:
. 1 2 . 2 8
A= [0—3} ’B_[34]
1 2 2 8 8 16
= A = =
c=awrve= [2] [38] - [2]

The elements of the new matrix C are found by multiplying each element of the Ith row of the
firstmatrix by the corresponding element of the Jth column of the second matrix, then adding
the values. The sum is the |,Jth element of the product matrix.

For instance, to do this matrix multiplication by hand, start with I=1 and J=1 and multiply the
elements of the first row of A by the corresponding elements of the first column of B, then add:

1%2+2x3=8

This is the element found in the first row, first column of C:

C(1,1) =8

Next, make 1=1 and J=2. Multiply each element in the first row of A by the corresponding
element in the second column of B, and add:

18+ 2%4 =16

This is the value assigned to the first row, second column of C;

C(1,2) =16

Now, let I=2 and J=1. Using the second row of A and the first column of B,

C(21)=0%2+ (—3)*3=—9

PLOT 50 PROGRAMMING REV A, SEP 1978

4-41

ARRAYS
MATRIX FUNCTIONS

And finally, 1=2 and J=2. Using the second row of A and the second column of B,

C(22)=0-8+(-3) - 4=—12

These calculations are summarized in the diagram below. At each step, the shaded row of the
first matrix and the shaded column of the second matrix are the items used to compute the
shaded element of the product matrix:

1 2 28 8 ' 2

STEP1 | o 4, = S C=1 2 | =1x2+2x3=8
STEP 2: _5 52 -8 C(12)=1 2 ,j 148+ 24416
STEP3: | _5 § 2 = _98 % cen=0 -3 s =0%2+ (—3)*3=—9
STEP 4; j g f: = _3 A:g , C(22)=0 -3 2 = 0%8+ (—3)x4=—12

The MPY function can only be performed when the number of columns in the first matrix is
equal tothe number of rows inthe second matrix. Forinstance, AMPY B can be performed for
the following matrices: :

2 3 —4 B -1 3 0
A"[3~1 2] ’B_{zos}

0 4 1
v

2x3 3x3

Asindicated above, matrix A hasthree columns and' matrix B has t‘h ree rows. Sincethe number
of columns in A is the same as the number of rows in B, the product C = A MPY B can be
computed.

Performing E MPY F results in an error for the following matrices:

1 0 3 0
1o 1 0 o 1 0 o
E= 2 0 2 0 = [—1 2 o}
0 4 0 1 2 1 1

1] v

4x4 3x3

4-42 REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
MATRIX FUNCTIONS

Here, matrix E has four columns and matrix F has three rows. The product E MPY F does not
exist, and performing G = E MPY F resultsin an error, because the number of columnsin E is
not the same as the number of rows in F.

Thefact that A may be multiplied by B does not necessarily mean that B may be multiplied by A.
Forinstance, inthefirst example C=AMPY B may be performed, but D=B MPY Aresultsinan
error. The product BMPY A does not exist, because the number of columnsin B is not equal to
the number of rows in A:

1 -2 1
B 1 0 2
B= {2 1—3J LA = [2 i 1]

0 1 1
v v

3x3 2x3

Since matrix B has three columns and matrix A has two rows, the product B MPY A does not
exist.

As afinalexample, if Aisa2x6 matrix, C=A MPY B may be performed for any matrix B which
has six rows. That is B may be a 6x1 matrix, a 6x2 matrix, a 6x3 matrix, or a 6x4 matrix, and so
on.

Insummary, C=AMPY B can be performed whenever B has as many rows as A has columns.

Theresult of AMPY Bis anew matrix which has as many rows as A, and as many columns as B.
For example:

3 1 —2
A= [; ? g:l , B = l:O —1 4:| , C=AMPYB=|:§ _1 i:l
2 0 O
2x3 3x3 2x3

)) A

Since A has two rows and B has three columns, there are two rows and three columns in the
result C.

PLOT 50 PROGRAMMING REV A, SEP 1978 443

ARRAYS
MATRIX FUNCTIONS

Here is another example:
3 1
[] o= 277 9]
7 0
3 1 7 2 -2
C=AMPYB= [—1 1} [2"1 0]: [—1 6-—2j|
7 0 1.5 -2 14 =7 0
3 1
2 -1 0 7 1:|
= = -1 1
o—ewrvas [27 9] | J [}

7 0
Since matrix A has two columns and matrix B has two rows, C = A MPY B can be computed.
The result has as many rows as A and as many columns as B, which means that C is a 3x3
matrix:

Il

AMPYB=C
3x2 2x3—3x3

Since B has three columns and A has three rows, the product D = B MPY A can also be

computed. The result has as many rows as B and as many columns as A, which means D is a
2x2 matrix:

BMPYA=D
2x3 3x2—2x2

Notice that both AMPY B and B MPY A can be performed, but the resulting matrices are not the
same, and are not even of the same size.

The MPY function returns the matrix product of two arrays. These parameter arrays must
previously appear in a DIM statement, using two subscripts to dimension each variable. The
dimensions of the parameters must be such that the arrays can be multiplied. That is, in order
to perform A MPY B, the second subscript used to dimension A must be the same as the first
subscript used to dimension B. For example:

100 DIM A(7,3),B(3,12)

4-44 REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
MATRIX FUNCTIONS

When the MPY function is performed, a new matrix is generated. The result must be assigned
to a target variable. The target variable must be dimensioned in a DIM statement, using two
subscripts to indicate the number of rows and columns in the resulting matrix. In order to
perform C = A MPY B, the first subscript used to dimension C must be the same as the first
subscript used to dimension A, and the second subscript used to dimension C must be the

same as the second subscript used to dimension B. For example:

100 DIM A(7,3),B(3,12),C(7,12)

The following program illustrates how the MPY function can be used to find the matrix product
of two arrays:

100 DELETE A,B,C

110 DIM A(3,3),B(3,2),C(3,2)

120 READ A,B

130 DATA 1,2,0,4,1,2,—1,3,0,5,0,—6,1,2,0
140 C = AMPY B

150 PRINT "A=";A

160 PRINT "B=";B

170 PRINT "C = A MPY B=";C

This program performs matrix multiplication on two arrays A and B, and prints the result. The
parameter matrices A and B are dimensioned in line 110. Since A is dimensioned to be a 3x3
matrix, and B is dimensioned to be a 3x2 matrix, the result of AMPY B is dimensioned in the
same DIM statement to be a 3x2 matrix called C. When line 140 is executed, A MPY B is
performed and the result is assigned to array variable C. The next three statements cause the
results to appear on the display, as indicated here:

1 2 0 5 0 -7 2
A= 4 1 2 , B = |:—6 1 ., C=AMPYB= ,:18 1:]
-1 3 0 2 0 —23 3

Thetarget fortheresult of the MPY function must not have the same variable name as either of
the parameters. That is, the following types of statements are not valid:

A=A MPYB
B =A MPYB

Using the same variable name for the target array as for one of the parameters results in an
error.

Attempting to perform the MPY function without assigning a numeric value to every element of
both parameters causes an UNDEFINED VARIABLE error message to be printed on the
display.

PLOT 50 PROGRAMMING REV A, SEP 1978 4-45

ARRAYS

MATRIX FUNCTIONS

4-46

Attempting to perform the MPY function causes a SIZE ERROR when one or more of the
elements in the result is out of range (outside the range +1.0E£308). After a SIZE ERROR
message appears on the display, the result of performing the MPY function may be obtained by
entering the target variable name and pressing RETURN. Elements in the result which are out
of range (too large or too small) contain the largest or smallest number possible,
+8.988465774E+307.

A MPY B vs B MPY A

Matrix multiplication is not commutative, that is, A MPY B does not generally return the same
result as B MPY A. For instance:

A= [2 _;] . B= [g 2] '
c-menafs 1) [53] -2 2]

43 0o 17 _ [6 —11
D= BMPYA= [o 2} [2 —5] B [4 —10]

Notice that matrices C = A MPY B and D = B MPY A are not the same. Thisis to be expected
when performing matrix multiplication.

Since the results of A MPY B and B MPY A are usually different, care must be taken when
determining which of the two products A MPY B or B MPY A is needed. Making the wrong
choicemay resultinanincorrect answer, or even an error message: in many casesitis possible
to perform A MPY B, but not B MPY A because of mismatched dimensions.

The Zero Matrix

One unusual property of matrix multiplication concerns the matrix called 0 becauseit is filled
entirely with 0’s. In ordinary arithmetic, X # Y =0 meansthat either Xor Y or both are 0. But this
is not the case in matrix algebra: A MPY B may be 0 without either A or B being 0. Here is an

example:
- _ 137 _[oo
A= [2 ~2] , B= [1 3] , AMPYB= [0 0]

REV A, SEP 1978 PLOT 50 PROGRAMMING

(

ARRAYS
MATRIX FUNCTIONS

Here, neither AnorBis0, yetthe product AMPY B is 0. Keep in mind that this can happenwhen
using the MPY function, and don’t be alarmed when it does.

The Difference Between * and the MPY Function

There is more than one way to multiply matrices. One way uses the arithmetic operator - to
form the element-by-element product of matrices A and B. The other way uses the MPY
function to form the "matrix product” of A and B. The matrix product and the element-by-
element product are computed in different ways, and yield different answers. For example:

A= [; _i] - B= [g 3] '
o= wxa= o 5] [55] - [5%]

12 2 8 8 16
D"AMPYB_[O —3] [3 4] ‘[«9 —12}

Notice that A* B and A MPY B give different results. A* B is called the element-by-element

product of A and B, because each element in the result is the product of the corresponding

elements of Aand B. Thatis, C=A* Biscalculated asfollows: C(1,1) =A(1,1) * B(1,1) =1% 2=
2,C(1,2)=A(1,2) *B(1,2) =2# 8= 16, and so on. However, D= A MPY B, the matrix product of

A and B, is obtained in a different manner.

Do not confuse the operation A* B with the matrix product provided by the MPY function.
Matrix multiplication MPY has a special relationship to systems of linear equations, and has
many other significant applications. You will find when working with matrices that the words
"product” and "multiplication” often mean the matrix product and matrix multiplication, as

provided by the MPY function. In such situations, using the operator * instead of the MPY

function results in incorrect answers.

Raising Matrices to a Power

A matrixmay be raised to a power in more than oneway. One method uses the operatort or *
to raise each element of an array to a specified power. Another method finds the powers of a
matrix by using the MPY function.

PLOT 50 PROGRAMMING REV A, SEP 1978 4-47

ARRAYS

MATRIX FUNCTIONS

4-48

For example, At2 creates a matrix whose elements are the square of the corresponding
elements in A. Likewise, A - Aisthe element-by-element product of A with itself, and causes
each element of A to be squared in the same manner as At2. However, A MPY A squares A by
computing the matrix product of A with itself, and gives a different result, as seen in the
following example:

0 1 01 2 3
_ I I * A=A 15— l _ _ ‘
A= 53 . A¥A=A12= , B=A MPY A= »

Itisimportant not to confuse these methods of raising matrices to a power. Certain situations
call forthe "power"” of a matrix to be computed by repeatedly performing the MPY function. In
such cases, using the operator t or * by mistake produces incorrect answers.

How Matrix Multiplication Relates to Systems of Linear Equations

A set of simultaneous equations can be represented by a matrix product. For example,
consider the following equations:

3x+2y= 5
4x+ y=11

An equivalent way to state the equations uses a matrix product:
3 2:“:x:| 5
4 1]Ly 11

Thefirstmatrixin the above expressionis called the "coefficient matrix” because its elements
are the coefficients of x and y in the original set of equations. The second matrix is a column
consisting of the unknowns x and y, and the third matrix is a column consisting of the
constants which appear to the right in the original set of equations.

If Aisthe coefficient matrix, Xis the column of unknowns, and Bis the column of constants, the
above expression can be written more compactly as follows:

AX =B

REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
MATRIX FUNCTIONS

AXis the matrix product of A and X. The expression AX = B is equivalent to the original set of
equations. This fact may be verified by working out the matrix multiplication as follows:

_[3 2 x] _ [3x+2y]_
AX= [4 1] [y] ~ Lax+ yJ_ 8

But, in this example, B is the column [1? , therefore the equation AX = B says the following:

3x+2y= 5
and
4x+ y=11

These are the original two equations. In other words, the matrix product form is an equivalent
way to state a system of equations.

NOTE

Do not enter a matrix of the type [;] from the keyboard. The elements of a matrix
must always be assigned numeric values, and attempting to assign variable names
such as x or y result in an error. The discussion above is provided only to help you
understand the relationship between linear equations and matrix multiplication.

PLOT 50 PROGRAMMING REV A, SEP 1978 4-49

ARRAYS

MATRIX FUNCTIONS

4-50

The TRN Function

The TRN function returns the transpose of a matrix:

[Line number] array variable = TRN array variable

Whenthe TRN functionis performed on amatrix, the resultis a new matrix found by making the
columns into rows, or the rows into columns. For instance, when B = TRN(A) is performed,

each row in A becomes the corresponding columnin B. This is equivalent to saying that each

column in A becomes the corresponding row in B. For example:

1 8
1.3 5

A= [] ,B=TRN (A)= | 3 —2
8 —2 0 .

In this example, A is a 2x3 matrix. When the TRN function is performed on A, the result is the
3x2 matrix B shown above.

Notice thatthe firstrow of Aisthe same asthe first column of B, and the second row of Ais the
sameasthe second column of B. Likewise, the first column of Aisthe same as the first row of B,
the second column of Aisthe same as the second row of B, and so on. Matrix Bisthetranspose
of matrix A.

When the TRN function is performed, the number of rows and columns ére reversed. In the
above example, A is a 2x3 matrix, so B=TRN(A) is a 3x2 matrix. In general terms, when A is a
matrix having K rows and N columns, B=TRN(A) is a matrix having N rows and K columns.

If A is a matrix consisting of one row, the TRN function returns a matrix consisting of one
column, and vice versa. For instance:

6
A= [6 1 8] , B=TRN (A) = 1]
8

Inthis example, Ais a 1x3 matrix, thatis, arow containing three elements. Bisthetranspose of
A, andistherefore a 3x1 matrix, a column containing three elements. Not assigning a numeric
value to one or more of the elements of the parameter matrix, causes an UNDEFINED
VARIABLE error message to be printed on the display when the TRN function is performed.

- REV A, SEP 1978 PLOT 50 PROGRAMMING

L

ARRAYS
MATRIX FUNCTIONS

If a matrix is to be used as a parameter for the TRN function, it must be dimensioned in a DIM
statement, using two subscripts toindicate the number of rows and columnsin the matrix. For
example, if a 5x6 matrix A is to be supplied to the TRN function, A must be dimensioned in the
following statement:

DIM A(5,6)

When the parameter for the TRN functionis a matrix consisting of one row of four elements, the
matrix should not be dimensioned as DIM A(4). The correct way to dimension the matrix is:

DIM A(1,4)

When the TRN function is performed, the result is a new matrix, which must be assigned to an
array variable, called the target variable because it serves as a "target” for the new matrix. The
target variable must be dimensioned in a DIM statement, using two subscripts to indicate the
number of rows and columns. The subscripts used to dimension the target variable must bethe
reverse of the subscripts used to dimension the parameter variable. For instance:

DIM A(5,6),B(6,5)

This statement dimensions a 5x6 matrix A which may be used as a parameter for the TRN
function. Matrix B may be used as the target variable, because it is dimensioned to be a 6x5
matrix. Forgetting to dimension the target variable causes an INVALID FUNCTION
ARGUMENT message to appear on the display.

Thefollowing programillustrates how the TRN function may be used to find the transpose of a
matrix:

100 DELETE A,B /
110 DIM A(2,3),B(3,2)

120 READ A

130 DATA 1,3,5,8,—2,0

140 B = TRN (A)

150 PRINT B

This program computes the transpose of a 2x3 matrix A, and assigns the result to target
variable B. The first line of the program deletes variables A and B from memory. This is a
precautionary measureto make surethat the variables are in an undefined state beforeline 110
is executed. (Previously defined numeric variables cannot be dimensioned as array variables
without first deleting them from memory.)

PLOT 50 PROGRAMMING REV A, SEP 1978 4-51

ARRAYS

MATRIX FUNCTIONS

4-52

Line 110 dimensions the variable A to be a 2x3 matrix. Variable B is to be used as the target
variable, and is dimensioned in the same statement to be a 3x2 matrix.

When line 120 is executed, the numbers contained in line 130 are assigned to matrix A in row
major order. The result is shown below:

B 1 3 5
A= [8—20]

Inline 140, TRN(A) is performed and the result is assigned to the target variable. Finally, line
150 causes the result to appear on the display. The result is shown below:

' 1 8
B = TRN (A) = 3 -2
5 0

Thetranspose of amatrix A does not have the same shape as matrix A, unless Ais square (has
the same number of rows as columns). For this reason, caution must be used when giving the
same name to the target variable as to the parameter variable. For example:

100 DELETE A

110 DIM A(5,2)

120 READ A

130 DATA 1,2,6,—4,3,0,8,1,—2
140 A = TRN (A)

150 PRINT A

This program causes a SHAPE ERROR message to appear onthedisplay. The SHAPE ERROR
occurs when line 140 is executed, because the statement 140 A=TRN(A) uses the same
variable name for the target variable and the parameter of the TRN function. When the
statement is executed, an attempt is made to assign the transpose of A, a 2x5 matrix, to array
variable A, which is dimensioned in line 110 to be a 5x2 matrix. A SHAPE ERROR results.

When matrix A is square (has the same number of rows as columns), the transpose of A does
have the same shape as A. In this case, the same variable name can be used for the target
variable as for the parameter of the TRN function. For example:

100 DELETE A

110 DIM A(3,3)

120 READ A

130 DATA 1,2,6,—4,3,0,8,1,—2
140 A = TRN (A)

150 PRINT A

REV A, SEP 1978 PLOT 50 PROGRAMMING

(

ARRAYS
SUMMARY

This program is the same as the previous one, but lines 100 and 120 have been modified to

make A a square 3x3 matrix. This time, line 140 does not cause a SHAPE ERROR, because A

andthetranspose of A are of the same shape and have the same number of elements. When the
statement A = TRN(A) is executed, the transpose of A is computed and assigned to array
variable A, replacing the original matrix A. The statement 140 PRINT A; causes the result to
appear on the display as indicated below:

1—4 8
A= 2 3 1
6 0 -2

The statement A= TRN(A) causes the original matrix A to be replaced by TRN(A). Care must
be taken not to “overwrite” the original matrix A in this way, if A is needed in later parts of the
program. In general, it is safer to use different variable names for the target variable and the
parameter variable; however, if a matrix has been overwritten by its transpose, the original
matrix can be recovered by performing the TRN function again.

SUMMARY

An array is an ordered collection of data items arranged in a defined pattern. Arrays in the
Graphic System can be one or two dimensional. Elements of one dimensional arrays are

referenced with a single subscript; elements of two dimensional arrays are referenced with two
subscripts.

The memory required to contain an array is allocated with the DIM statement. You can
dimension an array to a smaller number of elements with no problem, but to re-dimension an

array to alarger number of elements, you must first delete the array from memory and then re-
allocate the space.

You can input data to an array without having to utilize a FOR/NEXT loop for subscripts by
using INPUT or READ. The array isfilled in row major order, i.e., the first row is filled first from
the lowest-to-highest subscript, then the second row, and so on. Data can be output similarly,
using PRINT. Array assignments can be used to copy one array into another, or to set all the

elements of an array equal to a single value. You can perform arithmetic operations on arrays
just as you would with numeric variables.

In addition to performing simple arithmetic operations on arrays, the Graphic System performs
algebraic operations on matrices. These algebraic operations are called matrix functions to

distinguish them from other array operations. The matrix functions provide the determinant

(DET), theidentity matrix (IDN), the inverse and solutions to systems of linear equations (INV),

the matrix product (MPY), and the transpose (TRN).

PLOT 50 PROGRAMMING REV A, SEP 1978 4-53

ARRAYS
EXAMP

4-54

LES

EXAMPLE PROGRAMS

TITLE: Student Grade Averages

DESCRIPTION: This program inputs student names and grades, and outputs the averages of

each student plusthe class average. You supply the program with the number of students and
the number of grades per student.

PROGRAM LISTING:

100
116
120
136
146
156
160
179
180
150
200
cl1e
220
239
248
250
269
279
280
290
300
310
320
330
340
330
360
370

EE?ERK STUDENT GKADE AVERAGES

?ﬁ;ﬁ; ;ENTER NUMBER OF STUDENTS: "3

PRINT "ENTER NUMBER OF GRADES PER STUDENT: “j
INPUT M

DELETE G

DIM GCM)

:s%n; "ENTER STUDENT NAME FOLLOWED BY GRADES"
PRINT

C=0

FOR J=1 TO M

INPUT S%
S=0

FOR I=1 TO
PRINT "("31
INPUT GCID
$=5+G(I)
HEXT 1
A=S/H

PRINT “%xx AUVERAGE= "“3}A
PRINT

PRINT

C=C+A

NEXT J

A=C/N

PRINT

M
;") ll;

380 PRINT

390
4080

R
PRINT "CLASS AVERAGE= "jA
END

METHODOLOGY: The data is input with a nested FOR loop which also provides visual
organization of the data. The DELETE in line 160 permits array "G" to be redimensioned to a
larger size on succeeding runs of the program.

REV A, SEP 1978 PLOT 50 PROGRAMMING

ARRAYS
EXAMPLES

OPERATING PROCEDURE: Type RUN, press RETURN. The program responds with ENTER
NUMBER OF STUDENTS. Enter the number and press RETURN. The next prompting is
ENTER NUMBER OF GRADES PER STUDENT. Enter this number, then press RETURN. The
last prompting is ENTER STUDENT NAME FOLLOWED BY GRADES. Enter the name of the
first student, press RETURN, then enter the student’s grades, separating the grades with
RETURN. When the last grade has been entered, the student’s average is output. You then

enter the name of the next student, etc. When all the information has been entered, the class
average is output.

OUTPUT SAMPLE:

ENTER NUMBER OF STUDENTS: 3
ENTER HUMBER OF GRADES PER STUDENT: 3
ENTER STUDENT NAME FOLLOMED BY GRADES

STUDENTY
(1, 78
(2, &7
(3, 89
%% AUERAGE= B84.6666666667

STUDENTZ

(1, 75

(2) 93

(3) 84

¥%% AVERAGE= 84

STUDENT3
(1) 91
(2) 89

(3, 90
$¥X AVERAGE= 90

CLASS AVERAGE= 86.2222222222

PLOT 50 PROGRAMMING REV A, SEP 1978 4-55

ARRAYS
EXAMPLES

TITLE: Security Analysis Program

DESCRIPTION: The program inputs monthly closing prices for stocks over a period of time,
and outputs the average price and standard deviation for each security. Theoretically, the
stock with the largest standard deviation is the one exhibiting the most rapid changein closing

prices.

PROGRAM LISTING:

100
110
120
120
140
150
160
170
180
196
200
210
228
230

REMARK ¥% SECURITY ANALYSIS PROGRAM

?ﬁés} ;ENTER THE NUMBER OF STOCKS TO BE ANALYZED:
PRINT "ENTER THE NUMBER OF PRICES PER STOCK: "j
INPUT M

DELETE 8

DIM SCH,M)

REMARK INPUT DATA

FOR 1=1 TO N

PRINT “ENTER THE “gM3* PRICES FOR SECURITY # *j1
FOR J=1 TO M

PRINT "C*3J5">8"}

INPUT S(I,4J)

NEXT J

240 NEXT 1

259

4-56

gEMQRK OUTPUT THE AUG. PRICE AND STD. DEVIATION

AGE

z§§:¥ "SECURITY #","AUG. PRICE","STD. DEVIATION*
FOR I=1 TO N

T1=0

FOR J={ TO M
T1=T14SC1yJ)

NEXT J

A=T1/M

T2=0

FOR J={ TO M
52’;2*(S(I,J)-h)12

EXT J
D=(T2/(M-1))10.5
PRINT I4AyD
NEXT I
PRINT
PRINT

REMARK OUTPUT AUVERAGES

PRINT "MONTH","AUG (ALL STOCKS)"
PRINT

FOR J=1 TO H

T1=0

FOk I=1 TO N

Ti=T1+S(1,J)

NEXT 1

PRINT J, TI/N
NEXT J

END

REV A, SEP 1978

Hoe
y

PLOT 50 PROGRAMMING

ARRAYS
EXAMPLES

METHODOLOGY: Nested FOR loops are used to input and output data. The DELETE in line

150 permits upward redimensioning of the array "S”. The standard deviationis obtained inline
390.

OPERATING PROCEDURE: Type RUN and press RETURN. The program responds with

"ENTER THE NUMBER OF STOCKS TO BE ANALYZED". Enter the appropriate figure and
press RETURN. The next promptis "ENTER THE NUMBER OF PRICES PER STOCK". Enter a
number corresponding to the number of closing prices involved, and press RETURN. The
program then goes on to ask you to enter the various prices. Once this is done, the average

price and standard deviation for each set of stocks is output, followed by the average price for
all stocks for each month.

OUTPUT SAMPLE:

RUN

- ENTER THE NUMBER OF STOCKS TO BE ANALYZED: 4
ENTER THE NUMBER OF PRICES PER STOCK: 3
ENTER THE 3 PRICES FOR SECURITY # 1|
(1)%$56.50
(2)%56.99
(2)$57.16
ENTER THE 3 PRICES FOR SECURITY # 2

(1)$45,89

(2)%$45.34

(3)8$44,90

ENTER THE 3 PRICES FOR SECURITY # 3

(1)$78.98

(27%78,04

(3)$79.10

ENTER THE 3 PRICES FOR SECURITY # 4

(1>%23.56

(2,$23.98

(3)$23.90
SECURITY # AUG. PRICE STD. DEVIATION
1 56.8333333333 8.305505084633
2 45.3766666667 8.496017472811
3 78.7066666667 8.580459588028
4 23.8133333333 8.2230809715782
MONTH AUG (ALL STOCKS)

{ $1.2325

2 51.065

3 51.25

PLOT 50 PROGRAMMING REV A, SEP 1978 4-57

ARRAYS
EXAMPLES

TITLE: Questionnaire Analysis

DESCRIPTION: The program inputs data obtained from questionnaires, and outputs a
tabulation of the responses. The program also outputs a cross tabulation; that is, it reveals the
number of respondents giving each possible combination of responses to any two questions of
your choosing. Ten possible responses are allowed for each question. A response of 0"
means "no response”; the remaining nine responses can be 1 throUgh 9.

PROGRAM LISTING:

}?g EE?EI*GUESTIUNNQIRE ANALYSTS PROGRAM

igg ?ﬁés; ;EHTER NUMBER OF QUESTIONS ON QUESTIONNAIRE ";
126 PRINT "ENTER MUMBER OF CROSS TABULATIONS: *;

150 INPUT H2

168 IF N2>@ THEN 150

178 PRINT "INUALID ENTRY!"

186 GO TO 140

198 DELETE RyX,yYyCyT

209 ?!g RCH1DyXCN2)y Y (N2),C(N2y18@), T(N1,18)

220 C=0

230 N3=0

249 PRINT "ENTER QUESTIONS TO BE CROSS-TABULATED (N,N): *
250 FOR I=1 TO N2

260 INPUT X(I),Y(1)

270 IF %(15=Y(1) THEN 240

289 NEXT I

299 PRINT "ENTER RESPONSES TO QUESTIONNAIRE NUMBER *jN3+1
300 FOR I=1 70 NI

310 PRINT "(*313%) "3

320 INPUT RCID

330 IF R(1)>9 THEN 350

340 IF RCI)=>@ THEN 380 |

350 PRINT *RESPONSE MUST BE BETWEEN @ AND 9"

360 PRINT "RE-ENTER RESPONSE (*313*) *

370 GO TO 320

380 TCI,RCID+1)=TCT,RCI+1)+1

399 NEXT 1

400 REMKXXXSUM CROSS-TABS

418 FOR =1 TO N2

420 RI=10XRCXCI)I4RCY(I))

438 CCI,R9)=CCI,R)+1

448 NEXT 1

456 N3=N3+1

469 PRINT "ANOTHER GUESTIONNAIRE 7 (YES=1, NO=2) *;
476 INPUT G

480 GO TO O OF 298,490

499 PAGE

568 REMSXXOUTPUT RESULTS

4-58 REV A, SEP 1978 PLOT 50 PROGRAMMING

920

960

PLOT 50 PROGRAMMING

ARRAYS
EXAMPLES

PRINT "NUMBER OF QUESTIONNAIRES= ";N3
PRINT
FOR I=1 TO N

- PRINT "RESPONSES TO QUESTION ";1

PRINT

PRINT "RESPONSE", "NUMBER","PERCENT"
PRINT “**X********1*3**3*‘**1i“‘*t**!*‘*l‘*“**t*!‘“
IF TCIy1)=0 THEN 610
P=0,1XINT(1800%T(1,1)/N3+0.5)
PRINT "MONE",T(I, l),P

FOR J=2 TO 18

T9=T¢(1,J)

IF T9=0 THEN 660

P=0, 1XINT(1000%XT9/N3+0.5)

PRINT J~1,T9,P

NEXT J

PRINT

PRINT

NEXT I

REMXXX0UTPUT CROSS-TABS

FOR I=1 TO N2

PRINT

PRINT *CROSS-TABULATION *;I

PRINT

PRINT “RESPONSE TO*,"RESPONSE TO"
PRINT "QUESTION "; X(I),"QUESTION “3YC1), "NUMBER", "PCT, *
PRINT “**********‘t***'*‘*‘********‘***********‘*“****tt***‘******"
FOR J=1 TO 108

C9=C(1,J7

IF C9=9 THEN 939

R1=INT(J/18)

R2=J-16%R1

IF R1=0 THEH 860

PRINT Rt,y"";

GO TO 879

PRINT "NONE","";

IF R2=0 THEN 9500

PRINT R2,""}

GO T0 919

PRINT “NONE",""3
P9=0.1XINT(1000%C9/H3+0.5)

PRINT C9,PS

NEXT J

HEXT 1

PRINT "END OF PROGRAM*

END

REV A, SEP 1978 4-59

ARRAYS

EXAMPLES

4-60

METHODOLOGY: The program involvesfairly extensive manipulations with arrays, using the
contents of one array to subscript another array. The responsesto the questionnaire are stored
inarray R, andtheresponsetotals are stored in array T. The results of the cross-tabulations are
accumulated in array C. Array C contains one row for each requested cross-tabulation, and
one hundred columns. The one hundred columns in C exist to provide a location
corresponding to each possible pair of responses in the cross-tabulation. For example, in
cross-tabulation 3, suppose that the response to the "first” questionis 9, and the response to
the "second” question is 2. In this case, 1 is added to the contents of C(3,92).

The response to the "first” question is multiplied by 10 and summed with the response to the
"second” question; this becomes the “column” subscript for array C. See statement 420. Later,
this technique is reversed: the question numbers are extracted from the "column” subscript
(statements 800 and 810), in effect, the technique makes it possible to simulate a three-
dimensional array.

OPERATING PROCEDURE: Type RUN and press RETURN. The program responds with
"ENTER NUMBER OF QUESTIONS ON QUESTIONNAIRE". Enter the appropriate number
and press RETURN. The program then asks "ENTER NUMBER OF CROSS TABULATIONS".
Enter the desired number (=1) and press RETURN. The next prompting is "ENTER
QUESTIONS TO BE CROSS-TABULATED (N,N)". To cross-tabulate questions 1 and 4, for
example, enter 1,4. The program will input as many of these pairs as there are questions to be
cross-tabulated. (You cannot cross-tabulate a question with itself.) Following this, the
program responds with "ENTER RESPONSES TO QUESTIONNAIRENUMBER 1". Once you
have entered this information, following each entry with RETURN, the program asks
"ANOTHER QUESTIONNAIRE? (YES =1, NO = 2)". Enter the appropriate response, and the
program continues in this fashion until all the questionnaire data has been input. Following
this, the tabulation and requested cross-tabulations are output.

OUTPUT SAMPLE:

ENTER NUMBER OF QUESTIONS ON GUESTIONNAIRE 3
ENTER NUMBER OF CROSS TABULATIONS: 2
ENTER QUESTIONS 70 BE CROSS-TABULATED (NyN):

1,2

143

EP;H)’ERXRESPOHSES TO QUESTIONNAIRE NUMBER 1
2y 2

3y 7

ANOTHER QUESTIONNAIRE ? (YESs1, NO=2) 1
ENTER RESPONSES TO QUESTIONNAIRE NUMBER 2

(1
2y 2
3y 3

REV A, SEP 1978 PLOT 50 PROGRAMMING

(

ARRAYS
EXAMPLES

ANOTHER QUESTIONNAIRE ? (YES=1, NO=2) 1
%Tzengnespousss TO QUESTIONNAIRE NUMBER 3
5 *

ANOTHER QUESTIONNAIRE 7 (YES=1, NO=2) 1
ETIERIRESPONSES TO QUESTIONNAIRE NUMBER 4
¢

2y 2

) 4

ANOTHER QUESTIONNAIRE ? CYES=1, NO=2) |
%TIERlRESPONSES TO QUESTIONNAIRE NUMBER 5
5 !

ANOTHER QUESTIONNAIRE ? (YES=1, NO=2)
E?;ERIRESPONSES TO QUESTIONNAIRE NUMBER 6
¢

2) 2

() 5

ANOTHER QUESTIONNAIRE ? (YES=1, NO=2) 2

NUMBER OF QUESTIONNAIRES= 6
RESPONSES TO QUESTION 1§

RESPONSE NUMBER PERCENT
EEEEREXARERERRERERRIEERXERRRKKSLXERRKXR TR X %
NONE ! 16.7

| 4 66.7

9 1 16.7

RESPONSES TO QUESTION 2

RESPONSE NUMBER PERCENT
ﬁgﬁéx*xx:xxxtx**xxxfxx:xxx:xxxxxxxxxxxx:xxxxx
2 4 66.7

4) 16.7

RESPONSES TO QUESTION 3

RESPONSE NUMBER PERCENT
xﬁxx*xxtxxx*xxxx:xxTxz:xx:xxxx:xx:xxxtzx;xx:x
5 4 66.7

?) 16.7

PLOT 50 PROGRAMMING REV A, SEP 1978 4-61

ARRAYS
EXAMPLES

4-62

CROSS-TABULATION 1

RESPONSE TO RESPONSE TO
QUESTION 1 QUESTION 2 NUMBER PCT.
03309320293 029388389330002030003380032828080309809%023338%3%43
NONE 2 ! 16.7
1 HONE 1 16.7
1 2 3 50
9 4 1 16.7
CROSS-TABULATION 2
RESPONSE TO RESPONSE TO
QUESTION 1 QUESTION 3 NUMBER PCT,
agzg**i**7****t*t**g*t*t*tt!t*tttttt*ft**tlttt!tt!tttttlt***
1 4 16.7
1 S 2 33.3
i ? 1 16.7
S 1 16.7

9
END OF PROGRAM

REV A, SEP 1978 PLOT 50 PROGRAMMING

-

Section 5

CHARACTER STRINGS

BACKGROUND

All of the programming techniques discussed so far have been concerned with arithmetic
data — numbers have been read into the memory, something is done to the numbers, and
numbers appear as output. In some of the examples, alphabetic data has been carried along
in the form of literal strings used to enhance output or prompt for input. Up to now, how-
ever, no operations have been performed on alphabetic data, or “‘character strings’’.

BASIC provides a number of built-in facilities for processing character strings or non-
numeric data. This section of the manual addresses the types of things that can be done
with strings.

One characteristic that every string has is its length. Length corresponds to the number of
characters present in the string. For example, the string “PROGRAM" has a length of seven.
If can be envisioned as appearing in the memory like this:

character position (1) (2) (3) (4) (5) (6) (7)
P R 0] G R A M

This brings out another characteristic of strings: each character has its own unique position
within the string. The character positions are numbered from left to right, with the number
1 corresponding to the leftmost character.

At this point, some mention should be made concerning the representation of string data

in the Graphic System memory. Obviously, if the character string “/PROGRAM"'. . .

stored in. memory, it must be represented with some numeric equivalent. The machine
works with binary numbers (1's and 0s), not with A’s, B’s, and C's. Also, if each computing
system represented string data differently, the programmer’s task would approach true
chaos instead of its present state of occasional perplexity. To escape this trap, a standardized
code has been established that had its beginning with the teletype; the code is the ASCI|
code (for American Standard Code for Information Interchange). Each character has an
equivalent decimal number ranging from 0 to 127. (A tabulation of the ASCII character set
is included in the Appendix.) The letter C"’, for example, appears in the ASCII code as the
binary pattern 1000011, which also is the binary equivalent for the decimal number 67.
From the standpoint of programming the Graphic System, all you need be concerned with
is the fact that each character has a decimal equivalent. These numbers are within the range
of 0 through 127.

PLOT 50 PROGRAMMING REV A, SEP 1978

5-1

CHARACTER STRINGS
BACKGROUND

String Assignment Statements

String data can be assigned to string variables with the familiar assignment operator. String
variables, you will recall, consist of one letter (A through Z) followed by a dollar sign ($),
as in A$, B$, X$, etc. String assignment examples:

160 LET A$="ABCDE"
119 B$="PROGRAM"
120 C$=as

Generally, string assignment statements look like

[line number] target string = source string

which means that characters are transferred from the source string to the target string. The
source string can be a previously defined string variable (as in line 120 above) or a character
string enclosed within quotes (lines 100 and 110 above).

Dimensioning String Variables

String variables in the Graphics System have a default length of 72 characters. This cor- (
responds to the maximum number of characters that can be printed on one line of the dis-

play. The total length of a string variable can be thought to consist of a working size and a

physical size. To illustrate, consider a statement like

560 LET A$="JOHN DOE"

where A$ has not been previously dimensioned. This commits space in the memory as
shown below: '

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) _(71) (72)
J 1O | HI|N D|O| E

l«—— Working size (8 char.) ———————I

f=—— Physical size (72 char. by defaulf)

Y
-

-\
=~

Assuming for the moment that no further characters are to be added to A$, the resulting
situation is that a significant amount of space in memory is left unused. The way around this
is to allocate space using a DIM statement. The form is essentially the same as the DIM
statement used with numeric arrays:

5.2 REV A, SEP 1978 PLOT 50 PROGRAMMING

CHARACTER STRINGS
BACKGROUND

[Line number] DIM string variable (numeric expression)

where the numeric expression is rounded to an integer and becomes the physical size of the
'string. Strings may be dimensioned longer than 72 characters; the maximum length is bounded
only by the amount of memory available. Continuing with the example of “JOHN DOE", a
more appropriate utilization of memory results through the following program segment:

o680 DIM As(8)
510 LET A$="JOHN DOE"

This allocates memory for A$ as follows:

J|O[H|N| [D|O|E

~— working size —s{

~— physical size —

Here, the working size and the physical size are the same, resulting in a more efficient use
of memory space.

If you attempt to assign a source string to a target having insufficient space to contain it,
an error will result. That is, if you attempt to place a ten character string into a string

variable that has been dimensioned to contain five characters, you will receive an error
message in return.

String Input/Output

The INPUT, READ/DATA, and PRINT statements can be used with string data in essentially
the same 'manner as with numeric data. A statement like

150 IHPUT A$

behaves as before, placing a question mark on the screen indicating that the BASIC interpreter
is awaiting data. You then enter the appropriate character string and press RETURN. The
string need not be enclosed in quotes. If the string is enclosed in quotes, then the quote

marks just become part of the string.

PLOT 50 PROGRAMMING REV A, SEP 1978 5-3

CHARACTER STRINGS
BACKGROUND

Similarly, the READ statement causes the BASIC interpreter to assign the next data item in
a DATA statement to the variable specified in the READ statement, as in

200 READ A$, B$

500 DATA “JOHN DOE", 1530 MAIN ST.”

String values in DATA statements must be enclosed in quotes and separated by commas.
Notice in statement 500 above the presence of digits in a character string. It is important to
recognize that a distinction exists between the number 5 and the character 5. Numbers can
enter into arithmetic operations; characters are ASCI| characters like X", “Y", *7", and
“#'". The letter ‘4", for example, cannot be used in a math operation.

The fact that character strings enclosed within quotes can appear in a DATA statement sug-
gests that you can mix numeric and non-numeric data in a DATA statement, and indeed you
can. For instance:

150 READ X, A$
160 READ Y, Z

700 DATA 214, “JONES”, 5.75, 40

Obviously, you have to ensure that the order of the data types appearing in the READ state-
ment corresponds to the data present in the DATA statement. If you attempt to READ

string data, but the next data item in the DATA statement is numeric (not enclosed in quotes),
you will be presented with an error message. Similarly, if you try to READ numeric data,

and the next data item is non-numeric, an error will occur.

String variables can also be mixed with numeric variables in a PRINT statement, as in’
200 PRINT X$5Y(N)I;CS;Y(N+1)

5-4 REV A, SEP 1978 PLOT 50 PROGRAMMING

CHARACTER STRINGS
BACKGROUND

String Comparisons

Control of program execution can be accomplished through string comparisons resulting in
conditional transfers. The method is quite similar to the way in which numeric comparisons

are performed, usingan IF. .. THEN. . . statement as before. The syntax form is essentially
the same:

[Line number] IF numeric expression THEN line number

The only difference is the way the numeric ex<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>